Structural similarity enhances interaction propensity of proteins.

作者: D.B. Lukatsky , B.E. Shakhnovich , J. Mintseris , E.I. Shakhnovich

DOI: 10.1016/J.JMB.2006.11.020

关键词:

摘要: We study statistical properties of interacting protein-like surfaces and predict two strong, related effects: (i) statistically enhanced self-attraction proteins; (ii) attraction proteins with similar structures. The effects originate in the fact that probability to find a pattern self-match between identical, even randomly organized protein is always higher compared for match different, promiscuous surfaces. This theoretical finding explains prevalence homodimers protein-protein interaction networks reported earlier. Further, our findings are confirmed by analysis curated database complexes showed highly significant overrepresentation dimers formed structurally divergent sequences ("superfamily heterodimers"). suggest homodimeric interactions pose strong competitive heterodimers evolved from homodimers. Such evolutionary bottleneck overcome using negative design pressure applied against homodimer formation. achieved through formation specific contacts charged residues as demonstrated both model real superfamily heterodimers.

参考文章(26)
Daan Frenkel, Berend Smit, From Algorithms to Applications ,(2007)
Caroline F. Wright, Sarah A. Teichmann, Jane Clarke, Christopher M. Dobson, The importance of sequence diversity in the aggregation and evolution of proteins Nature. ,vol. 438, pp. 878- 881 ,(2005) , 10.1038/NATURE04195
J. Mintseris, Z. Weng, Structure, function, and evolution of transient and obligate protein–protein interactions Proceedings of the National Academy of Sciences of the United States of America. ,vol. 102, pp. 10930- 10935 ,(2005) , 10.1073/PNAS.0502667102
D. B. Lukatsky, K. B. Zeldovich, E. I. Shakhnovich, Statistically Enhanced Self-Attraction of Random Patterns Physical Review Letters. ,vol. 97, pp. 178101- ,(2006) , 10.1103/PHYSREVLETT.97.178101
Jean-François Rual, Kavitha Venkatesan, Tong Hao, Tomoko Hirozane-Kishikawa, Amélie Dricot, Ning Li, Gabriel F. Berriz, Francis D. Gibbons, Matija Dreze, Nono Ayivi-Guedehoussou, Niels Klitgord, Christophe Simon, Mike Boxem, Stuart Milstein, Jennifer Rosenberg, Debra S. Goldberg, Lan V. Zhang, Sharyl L. Wong, Giovanni Franklin, Siming Li, Joanna S. Albala, Janghoo Lim, Carlene Fraughton, Estelle Llamosas, Sebiha Cevik, Camille Bex, Philippe Lamesch, Robert S. Sikorski, Jean Vandenhaute, Huda Y. Zoghbi, Alex Smolyar, Stephanie Bosak, Reynaldo Sequerra, Lynn Doucette-Stamm, Michael E. Cusick, David E. Hill, Frederick P. Roth, Marc Vidal, Towards a proteome-scale map of the human protein–protein interaction network Nature. ,vol. 437, pp. 1173- 1178 ,(2005) , 10.1038/NATURE04209
D. Frenkel, B. Smit, Understanding molecular simulation: from algorithms to applications Computational sciences series. ,vol. 1, pp. 1- 638 ,(2002)
Liisa Holm, Chris Sander, Protein Structure Comparison by Alignment of Distance Matrices Journal of Molecular Biology. ,vol. 233, pp. 123- 138 ,(1993) , 10.1006/JMBI.1993.1489
Leonid A. Mirny, Eugene I. Shakhnovich, How to derive a protein folding potential? A new approach to an old problem. Journal of Molecular Biology. ,vol. 264, pp. 1164- 1179 ,(1996) , 10.1006/JMBI.1996.0704
Daan Frenkel, Berend Smit, Jan Tobochnik, Susan R. McKay, Wolfgang Christian, Understanding Molecular Simulation Computers in Physics. ,vol. 11, pp. 351- 354 ,(2001) , 10.1063/1.4822570