Glauber dynamics of continuous particle systems

作者: Y KONDRATIEV , E LYTVYNOV

DOI: 10.1016/J.ANIHPB.2004.05.002

关键词:

摘要: Abstract This paper is devoted to the construction and study of an equilibrium Glauber-type dynamics infinite continuous particle systems. a special case spatial birth death process. On space Γ all locally finite subsets (configurations) in R d , we fix Gibbs measure μ corresponding general pair potential ϕ activity z > 0 . We consider Dirichlet form E on L 2 ( ) which corresponds generator H Glauber dynamics. prove existence Markov process M that properly associated with In positive satisfies δ : = ∫ 1 − e x also has spectral gap ⩾ Furthermore, for any pure state μ, derive Poincare inequality. The results about inequality are generalization refinement recent result from [Ann. Inst. H. Probab. Statist. 38 (2002) 91–108].

参考文章(18)
Chris Preston, Spatial birth and death processes Advances in Applied Probability. ,vol. 7, pp. 465- 466 ,(1975) , 10.1017/S0001867800040726
I︠u︡. M. Berezanskiĭ, I︠u︡. G. Kondratʹev, Spectral Methods in Infinite-Dimensional Analysis ,(1995)
V. A. Malyshev, R. A. Minlos, Gibbs Random Fields: Cluster Expansions ,(1991)
Michael Röckner, Zhi-Ming Ma, Construction of diffusions on configuration spaces Osaka Journal of Mathematics. ,vol. 37, pp. 273- 314 ,(2000) , 10.18910/11049
Masatoshi Fukushima, Yoichi Oshima, Masayoshi Takeda, Dirichlet forms and symmetric Markov processes ,(1994)
E. Lytvynov, T. Kuna, Yu. G. Kondratiev, Yu. M. Berezansky, On a spectral representation for correlation measures in configuration space analysis arXiv: Probability. ,(2006)
Barry Simon, Michael Reed, Methods of Modern Mathematical Physics ,(1972)