Geometrization of quantum mechanics

作者: T. W. B. Kibble

DOI: 10.1007/BF01225149

关键词:

摘要: … quantum mechanics. In particular, I shall show how, although X is a real manifold, the complex structure of quantum mechanics … in a form better suited to unification with general relativity…

参考文章(26)
Bertram Kostant, Quantization and unitary representations Springer Berlin Heidelberg. pp. 87- 208 ,(1970) , 10.1007/BFB0079068
C. Piron, On the Foundations of Quantum Physics Quantum Mechanics, Determinism, Causality, and Particles. pp. 105- 116 ,(1976) , 10.1007/978-94-010-1440-3_7
Jean-Paul Penot, Calcul différentiel dans les espaces vectoriels topologiques Studia Mathematica. ,vol. 47, pp. 1- 23 ,(1973) , 10.4064/SM-47-1-1-23
J. Kijowski, W. Szczyrba, On differentiability in an important class of locally convex spaces Studia Mathematica. ,vol. 30, pp. 247- 257 ,(1968) , 10.4064/SM-30-2-247-257
Paul Robert Chernoff, Jerrold Eldon Marsden, Properties of infinite dimensional Hamiltonian systems ,(1974)
Veeravalli S. Varadarajan, Geometry of quantum theory ,(1968)
Arthur Jaffe, Book Review: Introduction to axiomatic quantum field theory Bulletin of the American Mathematical Society. ,vol. 83, pp. 349- 352 ,(1977) , 10.1090/S0002-9904-1977-14261-4
N. N. Bogolubov, Introduction to axiomatic quantum field theory W. A. Benjamin, Inc., Reading, MA. ,(1975)