Original paper: Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance

作者: T. Rumpf , A.-K. Mahlein , U. Steiner , E.-C. Oerke , H.-W. Dehne

DOI: 10.1016/J.COMPAG.2010.06.009

关键词:

摘要: Automatic methods for an early detection of plant diseases are vital precision crop protection. The main contribution this paper is a procedure the and differentiation sugar beet based on Support Vector Machines spectral vegetation indices. aim was (I) to discriminate diseased from non-diseased leaves, (II) differentiate between Cercospora leaf spot, rust powdery mildew, (III) identify even before specific symptoms became visible. Hyperspectral data were recorded healthy leaves inoculated with pathogens beticola, Uromyces betae or Erysiphe causing respectively period 21 days after inoculation. Nine indices, related physiological parameters used as features automatic classification. Early plants well among can be achieved by Machine radial basis function kernel. discrimination resulted in classification accuracies up 97%. multiple three still accuracy higher than 86%. Furthermore potential presymptomatic demonstrated. Depending type stage disease 65% 90%.

参考文章(69)
Hugo Carrão, Paulo Gonçalves, Mário Caetano, André Pinheiro, Land cover classification with Support Vector Machine applied to MODIS imagery Proceedings of the 25th EARSeL Symposium. ,(2005)
G. Guyot, F. Baret, Utilisation de la Haute Resolution Spectrale pour Suivre L'etat des Couverts Vegetaux Spectral Signatures of Objects in Remote Sensing. ,vol. 287, pp. 279- ,(1988)
Ulrike Steiner, Kathrin Bürling, Erich-Christian Oerke, Sensorik für einen präzisierten Pflanzenschutz Gesunde Pflanzen. ,vol. 60, pp. 131- 141 ,(2008) , 10.1007/S10343-008-0194-2
Hans-Peter Kriegel, Martin Ester, Jörg Sander, Xiaowei Xu, Density-connected sets and their application for trend detection in spatial databases knowledge discovery and data mining. pp. 10- 15 ,(1997)
Jeanny Hérault, Françoise Fogelman-Soulié, Neurocomputing : algorithms, architectures and applications Springer-Verlag. ,(1990)
Jos De Brabanter, Tony Van Gestel, Joos Vandewalle, Bart De Moor, Johan A K Suykens, Least Squares Support Vector Machines ,(2002)
Georg Ruß, Rudolf Kruse, Martin Schneider, Peter Wagner, Data Mining with Neural Networks for Wheat Yield Prediction international conference on data mining. pp. 47- 56 ,(2008) , 10.1007/978-3-540-70720-2_4
M. Ferreiro-Armán, J. -P. Da Costa, S. Homayouni, J. Martín-Herrero, Hyperspectral Image Analysis for Precision Viticulture Lecture Notes in Computer Science. ,vol. 4142, pp. 730- 741 ,(2006) , 10.1007/11867661_66
Bernhard Schölkopf, Alexander J. Smola, Learning with Kernels The MIT Press. pp. 626- ,(2018) , 10.7551/MITPRESS/4175.001.0001