Bayesian inference for Markov processes with diffusion and discrete components

作者: P. G. Blackwell

DOI: 10.1093/BIOMET/90.3.613

关键词:

摘要: SUMMARY Data arising in certain radio-tracking experiments consist of both a continuous spatial component and discrete related to behaviour. This leads naturally stochastic models with state space which is product components. We consider class such time, can be thought as diffusions random environments. They are switching diffusion or hidden Markov models, but observations made on components at time points, so that neither completely 'hidden'. describe illustrate an approach fully Bayesian inference for these general models. The algorithm used hybrid chain Monte Carlo method. parameters, the environment parameters sample path process itself updated separately, sequence, individual steps mixture Gibbs walk MetropolisHastings types. Some implementation model checking issues discussed, example using data from experiment described.

参考文章(18)
Gilles Celeux, Merrilee Hurn, Christian P. Robert, Computational and Inferential Difficulties with Mixture Posterior Distributions Journal of the American Statistical Association. ,vol. 95, pp. 957- 970 ,(2000) , 10.1080/01621459.2000.10474285
Aki Vehtari, David B. Dunson, Andrew Gelman, Hal S. Stern, Donald B. Rubin, John B. Carlin, Bayesian Data Analysis ,(1995)
Bruce J. Worton, Modelling radio-tracking data Environmental and Ecological Statistics. ,vol. 2, pp. 15- 23 ,(1995) , 10.1007/BF00452929
P.G. Blackwell, Random diffusion models for animal movement Ecological Modelling. ,vol. 100, pp. 87- 102 ,(1997) , 10.1016/S0304-3800(97)00153-1
Simeon M. Berman, A bivariate markov process with diffusion and discrete components Stochastic Models. ,vol. 10, pp. 271- 308 ,(1994) , 10.1080/15326349408807297
Siegfried Schach, Weak Convergence Results for a Class of Multivariate Markov Processes Annals of Mathematical Statistics. ,vol. 42, pp. 451- 465 ,(1971) , 10.1214/AOMS/1177693397
Luke Tierney, Markov Chains for Exploring Posterior Distributions Annals of Statistics. ,vol. 22, pp. 1701- 1728 ,(1994) , 10.1214/AOS/1176325750
John C Liechty, Gareth O Roberts, Markov chain monte carlo methods for switching diffusion models Biometrika. ,vol. 88, pp. 299- 315 ,(2001) , 10.1093/BIOMET/88.2.299
T. E. Tew, I. A. Todd, D. W. Macdonald, Arable habitat use by wood mice (Apodemus sylvaticus). 2. Microhabitat Journal of Zoology. ,vol. 250, pp. 305- 311 ,(2000) , 10.1111/J.1469-7998.2000.TB00774.X
J. P. Sy, J. M. G. Taylor, W. G. Cumberland, A stochastic model for the analysis of bivariate longitudinal AIDS data. Biometrics. ,vol. 53, pp. 542- 555 ,(1997) , 10.2307/2533956