Asymptotic methods for peristaltic transport of a heat-conducting fluid

作者: M.C Shen , D Ebel

DOI: 10.1016/0022-247X(87)90139-9

关键词:

摘要: Abstract Two asymptotic methods based upon Stokes and long-wave approximations are developed for the study of transporting a heat-conducting fluid through flexible tube by peristaltic motion well. The justified rigorously existence unique generalized solution governing equations is proved if condition in terms Reynolds number other nondimensional parameters satisfied.

参考文章(11)
S A Nazarov, ELLIPTIC BOUNDARY VALUE PROBLEMS WITH PERIODIC COEFFICIENTS IN A CYLINDER Mathematics of the USSR-Izvestiya. ,vol. 18, pp. 89- 98 ,(1982) , 10.1070/IM1982V018N01ABEH001384
Jacob T. Schwartz, Richard A. Silverman, O. A. Ladyzhenskaya, Jacques E. Romain, The Mathematical Theory of Viscous Incompressible Flow ,(2014)
G. Radhakrishnamacharya, M.K. Maiti, Heat transfer to pulsatile flow in a porous channel International Journal of Heat and Mass Transfer. ,vol. 20, pp. 171- 173 ,(1977) , 10.1016/0017-9310(77)90009-6
Daniel D. Joseph, R. C. DiPrima, Stability of fluid motions ,(1976)
S. Rionero, G. Mulone, Existence and uniqueness theorems for a steady thermo-diffusive mixture in a mixed problem Nonlinear Analysis-theory Methods & Applications. ,vol. 12, pp. 473- 494 ,(1988) , 10.1016/0362-546X(88)90044-2
M. C. Shen, K. C. Lin, S. M. Shih, Peristaltic Transport of a Fluid-Particle Mixture SIAM Journal on Mathematical Analysis. ,vol. 12, pp. 49- 59 ,(1981) , 10.1137/0512005
Tin-Kan Hung, Thomas D. Brown, Solid-particle motion in two-dimensional peristaltic flows Journal of Fluid Mechanics. ,vol. 73, pp. 77- 96 ,(1976) , 10.1017/S0022112076001262
K. Stewartson, O. A. Ladyzhenskaya, R. A. Silverman, The Mathematical Theory of Viscous Incompressible Flow The Mathematical Gazette. ,vol. 56, pp. 83- ,(1972) , 10.2307/3613759