Learning to branch in Mixed Integer Programming

作者: George Nemhauser , Le Song , Elias B. Khalil , Bistra Dilkina , Pierre Le Bodic

DOI:

关键词:

摘要: The design of strategies for branching in Mixed Integer Programming (MIP) is guided by cycles of parameter tuning and offline experimentation on an extremely heterogeneous testbed, …

参考文章(25)
Tobias Achterberg, Roland Wunderling, Mixed Integer Programming: Analyzing 12 Years of Progress Springer Berlin Heidelberg. pp. 449- 481 ,(2013) , 10.1007/978-3-642-38189-8_18
Quentin Louveaux, Louis Wehenkel, Alejandro Marcos Alvarez, Machine Learning to Balance the Load in Parallel Branch-and-Bound ,(2015)
Fahiem Bacchus, Matthew Kitching, Eric I. Hsu, Sheila A. Mcllraith, Using expectation maximization to find likely assignments for solving CSP's national conference on artificial intelligence. pp. 224- 230 ,(2007)
Levente Kocsis, Csaba Szepesvári, Bandit Based Monte-Carlo Planning Lecture Notes in Computer Science. pp. 282- 293 ,(2006) , 10.1007/11871842_29
Laurence A. Wolsey, George L. Nemhauser, Integer and Combinatorial Optimization ,(1988)
Thorsten Joachims, Training linear SVMs in linear time knowledge discovery and data mining. pp. 217- 226 ,(2006) , 10.1145/1150402.1150429
Thorsten Joachims, Optimizing search engines using clickthrough data Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '02. pp. 133- 142 ,(2002) , 10.1145/775047.775067
Tobias Achterberg, Thorsten Koch, Alexander Martin, Branching rules revisited Operations Research Letters. ,vol. 33, pp. 42- 54 ,(2005) , 10.1016/J.ORL.2004.04.002
Jagat Patel, John W. Chinneck, Active-constraint variable ordering for faster feasibility of mixed integer linear programs Mathematical Programming. ,vol. 110, pp. 445- 474 ,(2007) , 10.1007/S10107-006-0009-0