Entropy Regularized LPBoost

作者: Manfred K. Warmuth , Karen A. Glocer , S. V. N. Vishwanathan

DOI: 10.1007/978-3-540-87987-9_23

关键词:

摘要: … LPBoost is the most straightforward boosting algorithm for doing this. It maximizes the soft … linear objective of LPBoost, we arrive at the Entropy Regularized LPBoost algorithm for which …

参考文章(26)
G Rätsch, Bernhard Schölkopf, Alexander J Smola, Sebastian Mika, Takashi Onoda, Klaus-Robert Müller, Robust Ensemble Learning MIT Press. pp. 207- 220 ,(2000)
G. Rätsch, T. Onoda, K.-R. Müller, Soft Margins for AdaBoost Machine Learning. ,vol. 42, pp. 287- 320 ,(2001) , 10.1023/A:1007618119488
OL Mangasarian, A Smola, P Bartlett, B Schölkopf, D Schuurmans, Advances in Large Margin Classifiers MIT Press. ,(2000)
Cynthia Rudin, Robert E. Schapire, Ingrid Daubechies, Boosting Based on a Smooth Margin Learning Theory. ,vol. 3120, pp. 502- 517 ,(2004) , 10.1007/978-3-540-27819-1_35
Ayhan Demiriz, Kristin P. Bennett, John Shawe-Taylor, Linear Programming Boosting via Column Generation Machine Learning. ,vol. 46, pp. 225- 254 ,(2002) , 10.1023/A:1012470815092
Naoki Abe, K. Manfred Warmuth, Junnichi Takeuchi, Polynomial Learnability of Stochastic Rules with Respect to the KL-Divergence and Quadratic Distance IEICE Transactions on Information and Systems. ,vol. 84, pp. 299- 316 ,(2001)
Yoav Freund, An Adaptive Version of the Boost by Majority Algorithm Machine Learning. ,vol. 43, pp. 293- 318 ,(2001) , 10.1023/A:1010852229904
Robert E. Schapire, Yoav Freund, Peter Bartlett, Wee Sun Lee, Boosting the margin: a new explanation for the effectiveness of voting methods Annals of Statistics. ,vol. 26, pp. 1651- 1686 ,(1998) , 10.1214/AOS/1024691352
Jyrki Kivinen, Manfred K. Warmuth, Boosting as entropy projection conference on learning theory. pp. 134- 144 ,(1999) , 10.1145/307400.307424