Tourr: An R package for exploring multivariate data with projections

作者: Hadley Wickham , Dianne Cook , Heike Hofmann , Andreas Buja

DOI: 10.18637/JSS.V040.I02

关键词:

摘要: This paper describes an R package which produces tours of multivariate data. The includes functions for creating different types tours, including grand, guided, and little project data (p-D) down to 1, 2, 3, or, more generally, d (≤ p) dimensions. projected can be rendered as densities or histograms, scatterplots, anaglyphs, glyphs, scatterplot matrices, parallel coordinate plots, time series images, viewed using graphics device, passed GGobi , saved disk. A tour path stored visualisation replay. With this it is possible quickly experiment with different, new, approaches contains animations that the Adobe Acrobat PDF viewer.

参考文章(25)
Adalbert F. X. Wilhelm, Edward J. Wegman, Jürgen Symanzik, Visual clustering and classification: The Oronsay particle size data set revisited Computational Statistics. ,vol. 14, pp. 109- 146 ,(1999) , 10.1007/PL00022701
Dianne Cook, Andreas Buja, Eun-Kyung Lee, Hadley Wickham, Grand Tours, Projection Pursuit Guided Tours, and Manual Controls Springer, Berlin, Heidelberg. pp. 295- 314 ,(2008) , 10.1007/978-3-540-33037-0_13
Antony Unwin, Chun-Houh Chen, Wolfgang Hädrdle, Handbook of Data Visualization Springer. ,(2016)
Daniel Asimov, Andreas Buja, Grand tour methods: an outline Proceedings of the Seventeenth Symposium on the interface of computer sciences and statistics on Computer science and statistics. pp. 63- 67 ,(1986)
Edward J. Wegman, Qiang Luo, High Dimensional Clustering Using Parallel Coordinates and the Grand Tour Classification and Knowledge Organization. pp. 93- 101 ,(1997) , 10.1007/978-3-642-59051-1_10
Andreas Buja, Dianne Cook, Daniel Asimov, Catherine Hurley, Computational Methods for High-Dimensional Rotations in Data Visualization Handbook of Statistics. ,vol. 24, pp. 391- 413 ,(2005) , 10.1016/S0169-7161(04)24014-7
Edward J. Wegman, Hyperdimensional Data Analysis Using Parallel Coordinates Journal of the American Statistical Association. ,vol. 85, pp. 664- 675 ,(1990) , 10.1080/01621459.1990.10474926