Evolving Ensemble-Clustering to a Feedback-Driven Process

作者: Martin Hahmann , Dirk Habich , Wolfgang Lehner

DOI: 10.1109/ICDMW.2010.136

关键词:

摘要: Data clustering is a highly used knowledge extraction technique and applied in more application domains. Over the last years, lot of algorithms have been proposed that are often complicated and/or tailored to specific scenarios. As result, has become hardly accessible domain for non-expert users, who face major difficulties like algorithm selection parameterization. To overcome this issue, we develop novel feedback-driven process using new perspective clustering. By substituting parameterization with user-friendly feedback providing support result interpretation, becomes allows step-by-step construction satisfying through iterative refinement.

参考文章(14)
Martin Hahmann, Peter B. Volk, Frank Rosenthal, Dirk Habich, Wolfgang Lehner, How to Control Clustering Results? Flexible Clustering Aggregation intelligent data analysis. ,vol. 5772, pp. 59- 70 ,(2009) , 10.1007/978-3-642-03915-7_6
Maria-Florina Balcan, Avrim Blum, Clustering with Interactive Feedback Lecture Notes in Computer Science. pp. 316- 328 ,(2008) , 10.1007/978-3-540-87987-9_27
Anil K. Jain, Martin H. C. Law, Data Clustering: A User’s Dilemma Lecture Notes in Computer Science. pp. 1- 10 ,(2005) , 10.1007/11590316_1
Arindam Banerjee, Joydeep Ghosh, Scalable Clustering Algorithms with Balancing Constraints Data Mining and Knowledge Discovery. ,vol. 13, pp. 365- 395 ,(2006) , 10.1007/S10618-006-0040-Z
Rong Ge, Martin Ester, Wen Jin, Ian Davidson, Constraint-driven clustering Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '07. pp. 320- 329 ,(2007) , 10.1145/1281192.1281229
A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: a review ACM Computing Surveys. ,vol. 31, pp. 264- 323 ,(1999) , 10.1145/331499.331504
Ian Davidson, S. S. Ravi, Martin Ester, Efficient incremental constrained clustering knowledge discovery and data mining. pp. 240- 249 ,(2007) , 10.1145/1281192.1281221
Alexander Strehl, Joydeep Ghosh, Cluster ensembles --- a knowledge reuse framework for combining multiple partitions Journal of Machine Learning Research. ,vol. 3, pp. 583- 617 ,(2003) , 10.1162/153244303321897735
Claire Cardie, Kiri Wagstaff, Clustering with Instance-level Constraints international conference on machine learning. pp. 1103- 1110 ,(2000)