Collisionless dynamics of the condensate predicted in the random phase approximation

作者: Patrick Navez

DOI: 10.1016/J.PHYSA.2005.03.032

关键词:

摘要: From the microscopic theory, we derive a number conserving quantum kinetic equation, for dilute Bose gas valid at any temperature, in which binary collisions between quasi-particles are mediated by Bogoliubov collective excitations. This different approach starts from many-body Hamiltonian of Boson and uses, an appropriate way, generalized random phase approximation. As result, collision term equation contains higher order contributions expansion interaction parameter. The major interest this particular mechanism is that, regime where condensate stable, process condensed noncondensed particles totally blocked due to total annihilation mutual potential induced itself. consequence, not constrained relax can be superfluid. Furthermore, Boltzmann-like H-theorem entropy exists allows distinguish dissipative nondissipative phenomena (like vortices). We also illustrate analogy theory plasma, excitations correspond precisely plasmon. spectrum these their damping exactly ones obtained gapless equilibrium dielectric formalism developed Fliesser et al. [Phys. Rev. A 64 (2001) 013609]. Finally, recover results ground state energy particle momentum distribution. work more details summary presented Navez [J. Low Temp. Phys., 138 (2005) 705–710].

参考文章(47)
N. Fukuda, The Many-body Problem ,(1971)
Isaak Markovich Khalatnikov, An introduction to the theory of superfluidity ,(1965)
M. Imamovic-Tomasovic, A. Griffin, Quasiparticle kinetic equation in a trapped Bose gas at low temperatures Journal of Low Temperature Physics. ,vol. 122, pp. 617- 655 ,(2001) , 10.1023/A:1004860602930
E. Zaremba, T. Nikuni, A. Griffin, Dynamics of Trapped Bose Gases at Finite Temperatures Journal of Low Temperature Physics. ,vol. 116, pp. 277- 345 ,(1999) , 10.1023/A:1021846002995
Jürgen Reidl, András Csordás, Robert Graham, Péter Szépfalusy, Shifts and widths of collective excitations in trapped Bose gases determined by the dielectric formalism Physical Review A. ,vol. 61, pp. 043606- ,(2000) , 10.1103/PHYSREVA.61.043606
R. Walser, J. Williams, J. Cooper, M. Holland, Quantum kinetic theory for a condensed bosonic gas Physical Review A. ,vol. 59, pp. 3878- 3889 ,(1999) , 10.1103/PHYSREVA.59.3878
Patrick Navez, Dmitri Bitouk, Mariusz Gajda, Zbigniew Idziaszek, Kazimierz Rza̧żewski, Fourth Statistical Ensemble for the Bose-Einstein Condensate Physical Review Letters. ,vol. 79, pp. 1789- 1792 ,(1997) , 10.1103/PHYSREVLETT.79.1789
Zbigniew Idziaszek, Mariusz Gajda, Patrick Navez, Martin Wilkens, Kazimierz Rza̧żewski, Fluctuations of the Weakly Interacting Bose-Einstein Condensate Physical Review Letters. ,vol. 82, pp. 4376- 4379 ,(1999) , 10.1103/PHYSREVLETT.82.4376
M. Girardeau, R. Arnowitt, THEORY OF MANY-BOSON SYSTEMS: PAIR THEORY Physical Review. ,vol. 113, pp. 755- 761 ,(1959) , 10.1103/PHYSREV.113.755