An Overview of Fuzzy C-Means Based Image Clustering Algorithms

作者: Huiyu Zhou , Gerald Schaefer

DOI: 10.1007/978-3-642-01533-5_12

关键词:

摘要: Clustering is an important step in many imaging applications with a variety of image clustering techniques having been introduced the literature. In this chapter we provide overview several fuzzy c-means based concepts and their applications. particular, summarise conventional (FCM) approaches as well number its derivatives that aim at either speeding up process or providing improved more robust performance.

参考文章(41)
Richard J. Hathaway, Yingkang Hu, On efficiency of optimization in fuzzy c-means Neural, Parallel & Scientific Computations archive. ,vol. 10, pp. 141- 156 ,(2002)
L. Szilagyi, Z. Benyo, S.M. Szilagyi, H.S. Adam, MR brain image segmentation using an enhanced fuzzy C-means algorithm international conference of the ieee engineering in medicine and biology society. ,vol. 1, pp. 724- 726 ,(2003) , 10.1109/IEMBS.2003.1279866
P.R. Kersten, Implementation issues in the fuzzy c-medians clustering algorithm Proceedings of 6th International Fuzzy Systems Conference. ,vol. 2, pp. 957- 962 ,(1997) , 10.1109/FUZZY.1997.622838
M. Sato, Y. Sato, Fuzzy clustering model for fuzzy data ieee international conference on fuzzy systems. ,vol. 4, pp. 2123- 2128 ,(1995) , 10.1109/FUZZY.1995.409973
O. Takata, S. Miyamoto, K. Umayahara, Fuzzy clustering of data with uncertainties using minimum and maximum distances based on L/sub 1/ metric joint ifsa world congress and nafips international conference. pp. 2511- 2516 ,(2001) , 10.1109/NAFIPS.2001.943617
D. Comaniciu, P. Meer, Mean shift analysis and applications international conference on computer vision. ,vol. 2, pp. 1197- 1203 ,(1999) , 10.1109/ICCV.1999.790416
Keh-Shih Chuang, Hong-Long Tzeng, Sharon Chen, Jay Wu, Tzong-Jer Chen, Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics. ,vol. 30, pp. 9- 15 ,(2006) , 10.1016/J.COMPMEDIMAG.2005.10.001
Daoqiang Zhang, Weiling Cai, Songcan Chen, Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation Pattern Recognition. ,vol. 40, pp. 825- 838 ,(2007) , 10.1016/J.PATCOG.2006.07.011
James C. Bezdek, A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 2, pp. 1- 8 ,(1980) , 10.1109/TPAMI.1980.4766964
Victor L. Brailovsky, A probabilistic approach to clustering Pattern Recognition Letters. ,vol. 12, pp. 193- 198 ,(1991) , 10.1016/0167-8655(91)90031-G