Genetic Programming for Feature Selection and Question-Answer Ranking in IBM Watson

作者: Urvesh Bhowan , D. J. McCloskey

DOI: 10.1007/978-3-319-16501-1_13

关键词:

摘要: IBM Watson is an intelligent open-domain question answering system capable of finding correct answers to natural language questions in real-time. uses machine learning over a large heterogeneous feature set derived from many distinct processing algorithms identify answers. This paper develops Genetic Programming (GP) approach for selection by evolving ranking functions order candidate generated Watson. We leverage GP’s automatic mechanisms Watson’s key features through the process. Our experiments show that GP can evolve relatively simple use much fewer original achieve comparable performances methodology aid implementers better components otherwise and complex development, troubleshooting, and/or customer or domain-specific enhancements.

参考文章(20)
D. A. Ferrucci, Introduction to This is Watson Journal of Reproduction and Development. ,vol. 56, pp. 235- 249 ,(2012) , 10.1147/JRD.2012.2184356
Jen Yuan Yeh, Wei Pang Yang, Hao-Ren Ke, Jung Yi Lin, Learning to Rank for Information Retrieval Using Genetic Programming ,(2007)
Riccardo Poli, William B. Langdon, Nicholas F. McPhee, John R. Koza, A Field Guide to Genetic Programming ,(2008)
William B. Langdon, Riccardo Poli, Nicholas F. McPhee, John R. Koza, Genetic Programming: An Introduction and Tutorial, with a Survey of techniques and Applications In: Fulcher, J and Jain, LC, (eds.) Computational Intelligence: A Compendium. (pp. 927-1028). Springer-Verlag (2008). pp. 927- 1028 ,(2008) , 10.1007/978-3-540-78293-3_22
Wensi Xi, Weiguo Fan, Edward A. Fox, Ye Zhou, Ming Luo, Rui Yang, Li Wang, Ranking Function Discovery by Genetic Programming for Robust Retrieval. text retrieval conference. pp. 828- 836 ,(2003)
Robert J Tibshirani, Bradley Efron, An introduction to the bootstrap ,(1993)
David Ferrucci, Anthony Levas, Sugato Bagchi, David Gondek, Erik T Mueller, None, Watson: beyond jeopardy! Artificial Intelligence. ,vol. 199, pp. 93- 105 ,(2013) , 10.1016/J.ARTINT.2012.06.009
Urvesh Bhowan, Mark Johnston, Mengjie Zhang, Xin Yao, Reusing Genetic Programming for Ensemble Selection in Classification of Unbalanced Data IEEE Transactions on Evolutionary Computation. ,vol. 18, pp. 893- 908 ,(2014) , 10.1109/TEVC.2013.2293393
Andrew Trotman, Learning to Rank Information Retrieval. ,vol. 8, pp. 359- 381 ,(2005) , 10.1007/S10791-005-6991-7