Comparison of clinicians and an artificial neural network regarding accuracy and certainty in performance of visual field assessment for the diagnosis of glaucoma.

作者: Sabina Andersson , Anders Heijl , Dimitrios Bizios , Boel Bengtsson

DOI: 10.1111/J.1755-3768.2012.02435.X

关键词:

摘要: Purpose: To compare clinicians and a trained artificial neural network (ANN) regarding accuracy certainty of assessment visual fields for the diagnosis glaucoma. Methods: Thirty physicians with different levels knowledge experience in glaucoma management assessed 30-2 SITA Standard field printouts that included full Statpac information from 99 patients glaucomatous optic neuropathy 66 healthy subjects. Glaucomatous eyes perimetric mean deviation values worsethan -10 dB were not eligible. The graded on scale 1-10, where 1 indicated absolute certaintyand 10 signified glaucoma; 5.5 was cut-off between same classified by previously ANN. ANN output transformed into linear matched used subjective assessments. Classification using classification error score. Results: Among physicians, sensitivity ranged 61% to 96% (mean 83%) specificity 59% 100% 90%). Our achieved 93% 91% specificity, it significantly more sensitive than (p < 0.001) at similar level specificity. score equivalent top third scores all never high degree any its misclassified tests. Conclusion: Our results indicate performs least as well assessments

参考文章(19)
R N Weinreb, M H Goldbaum, P Raphaelian, P A Sample, H White, R D Fechtner, B Côlt, Interpretation of Automated Perimetry for Glaucoma by Neural Network Investigative Ophthalmology & Visual Science. ,vol. 35, pp. 3362- 3373 ,(1994)
Christopher A. Girkin, Robert N. Weinreb, Michael H. Goldbaum, Terrence Sejnowski, Terrence Sejnowski, Linda M. Zangwill, Christopher Bowd, Pamela A. Sample, Te-Won Lee, Te-Won Lee, Julia Williams, Kwokleung Chan, Kwokleung Chan, Eytan Blumenthal, Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry Investigative Ophthalmology & Visual Science. ,vol. 43, pp. 162- 169 ,(2002)
Anders Heijl, Boel Bengtsson, False-negative responses in glaucoma perimetry: indicators of patient performance or test reliability? Investigative Ophthalmology & Visual Science. ,vol. 41, pp. 2201- 2204 ,(2000)
Robert N. Weinreb, Michael H. Goldbaum, Terrence Sejnowski, Catherine Boden, Andreas G. Boehm, Pamela A. Sample, Te-Won Lee, Chris A. Johnson, Christiana Vasile, Kwokleung Chan, Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields. Investigative Ophthalmology & Visual Science. ,vol. 43, pp. 2660- 2665 ,(2002)
Vincent Michael Patella, Douglas R. Anderson, Automated Static Perimetry ,(1992)
J. Katz, A. Sommer, Reliability indexes of automated perimetric tests. Archives of Ophthalmology. ,vol. 106, pp. 1252- 1254 ,(1988) , 10.1001/ARCHOPHT.1988.01060140412043
Joanne Katz, Alfred Sommer, Douglas E Gaasterland, Douglas R Anderson, Comparison of Analytic Algorithms for Detecting Glaucomatous Visual Field Loss Archives of Ophthalmology. ,vol. 109, pp. 1684- 1689 ,(1991) , 10.1001/ARCHOPHT.1991.01080120068028
Peter Åsman, Glaucoma Hemifield Test Archives of Ophthalmology. ,vol. 110, pp. 812- 819 ,(1992) , 10.1001/ARCHOPHT.1992.01080180084033
Boel Bengtsson, Dimitrios Bizios, Anders Heijl, Effects of input data on the performance of a neural network in distinguishing normal and glaucomatous visual fields. Investigative Ophthalmology & Visual Science. ,vol. 46, pp. 3730- 3736 ,(2005) , 10.1167/IOVS.05-0175