The consequences of contact pressure in phyllotaxis

作者: Irving Adler

DOI: 10.1016/0022-5193(77)90077-7

关键词:

摘要: Abstract To determine the consequences of contact pressure in phyllotaxis, a mathematical model is constructed which leaf distribution represented by point lattice n + 1 points at equal intervals on helix wound around cylinder. The normalized taking girth cylinder as and measuring time T plastochrones, so that = [T]. r stands for internode distance (component between two consecutive parallel to axis cylinder). d divergence (fraction turn points). It assumed monotonic decreasing function such r(T) → 0 ∞. Contact assumption minimum geodesic maximized. shown if (p, q), with p t 2 … (a x) determined q converges an ideal angle τ , where golden section. A necessary sufficient condition be −2 initial phyllotaxis Fibonacci numbers sequence 1, 2, 3, 5, 8, …. proved convergence τ−2 normal begin before 5 or 3 38 initially .

参考文章(8)
Simon Schwendener, Mechanische Theorie der Blattstellungen W. Engelmann. ,(1878)
Irving Adler, A model of contact pressure in phyllotaxis. Journal of Theoretical Biology. ,vol. 45, pp. 1- 79 ,(1974) , 10.1016/0022-5193(74)90043-5
H.S.M Coxeter, The Role of intermediate convergents in Tait's explanation for phyllotaxis Journal of Algebra. ,vol. 20, pp. 167- 175 ,(1972) , 10.1016/0021-8693(72)90096-8
F. J. Richards, Phyllotaxis: Its Quantitative Expression and Relation to Growth in the Apex Philosophical Transactions of the Royal Society B. ,vol. 235, pp. 509- 564 ,(1951) , 10.1098/RSTB.1951.0007
Irving Adler, A model of space filling in phyllotaxis Journal of Theoretical Biology. ,vol. 53, pp. 435- 444 ,(1975) , 10.1016/S0022-5193(75)80014-2
A.M. Mathai, T.Anthony Davis, Constructing the sunflower head Bellman Prize in Mathematical Biosciences. ,vol. 20, pp. 117- 133 ,(1974) , 10.1016/0025-5564(74)90072-8
P. A. Davies, LEAF POSITION IN AILANTHUS ALTISSIMA IN RELATION TO THE FIBONACCI SERIES American Journal of Botany. ,vol. 26, pp. 67- 74 ,(1939) , 10.1002/J.1537-2197.1939.TB12869.X
G. M. Petersen, H. S. M. Coxeter, Introduction to Geometry. The American Mathematical Monthly. ,vol. 68, pp. 1016- ,(1961) , 10.2307/2311833