An algorithm for solving the obstacle problems

作者: Lian Xue , Xiao-Liang Cheng

DOI: 10.1016/J.CAMWA.2004.02.007

关键词:

摘要: In this paper, we propose an algorithm for solving the obstacle problem. We try tofind approximated region of contact in problem by iteration. Numerical examples are given a membrane and elastic-plastic torsion

参考文章(16)
David Kinderlehrer, Guido Stampacchia, An introduction to variational inequalities and their applications ,(1980)
Yongmin Zhang, Multilevel projection algorithm for solving obstacle problems Computers & Mathematics With Applications. ,vol. 41, pp. 1505- 1513 ,(2001) , 10.1016/S0898-1221(01)00115-8
Raphaèle Herbin, A Monotonic Method for the Numerical Solution of Some Free Boundary Value Problems SIAM Journal on Numerical Analysis. ,vol. 40, pp. 2292- 2310 ,(2002) , 10.1137/S0036142900380558
Ralf Kornhuber, Monotone multigrid methods for elliptic variational inequalities I Numerische Mathematik. ,vol. 69, pp. 167- 184 ,(1994) , 10.1007/BF03325426
Richard S. Falk, Error estimates for the approximation of a class of variational inequalities Mathematics of Computation. ,vol. 28, pp. 963- 971 ,(1974) , 10.1090/S0025-5718-1974-0391502-8
Baba Imoro, Discretized obstacle problems with penalties on nested grids Applied Numerical Mathematics. ,vol. 32, pp. 21- 34 ,(2000) , 10.1016/S0168-9274(99)00014-8
Philippe G. Ciarlet, J. T. Oden, The Finite Element Method for Elliptic Problems ,(1978)