Quantum Cohomology of Toric Blowups and Landau-Ginzburg Correspondences

作者: Mark Shoemaker , Pedro Acosta

DOI:

关键词:

摘要: We establish a genus zero correspondence between the equivariant Gromov-Witten theory of Deligne-Mumford stack $[\mathbb{C}^N/G]$ and its blowup at origin. The relationship generalizes crepant transformation conjecture Coates-Iritani-Tseng Coates-Ruan to discrepant (non-crepant) setting using asymptotic expansion. Using this result together with quantum Serre duality MLK we prove LG/Fano LG/general type correspondences for hypersurfaces.

参考文章(24)
Andreas Gathmann, Gromov-Witten invariants of blow-ups arXiv: Algebraic Geometry. ,(1998)
Nathan Priddis, Mark Shoemaker, A Landau-Ginzburg/Calabi-Yau correspondence for the mirror quintic arXiv: Algebraic Geometry. ,(2013)
Tom Coates, Hiroshi Iritani, A Fock Sheaf For Givental Quantization arXiv: Algebraic Geometry. ,(2014) , 10.1215/21562261-2017-0036
Yongbin Ruan, Surgery, quantum cohomology and birational geometry arXiv: Algebraic Geometry. ,(1998)
Tom Coates, Hiroshi Iritani, Yunfeng Jiang, The Crepant Transformation Conjecture for Toric Complete Intersections Advances in Mathematics. ,vol. 329, pp. 1002- 1087 ,(2018) , 10.1016/J.AIM.2017.11.017
Arakaparampil M Mathai, Ram Kishore Saxena, Hans J Haubold, The H-Function : Theory and Applications ,(2009)
Jim Bryan, Tom Graver, The Crepant Resolution Conjecture arXiv: Algebraic Geometry. ,(2009)
Chris T. Woodward, Eduardo Gonzalez, A wall-crossing formula for Gromov-Witten invariants under variation of git quotient arXiv: Algebraic Geometry. ,(2012)
Pedro Acosta, Asymptotic Expansion and the LG/(Fano, General Type) Correspondence arXiv: Algebraic Geometry. ,(2014)