Sparse modeling-based sequential ensemble learning for effective outlier detection in high-dimensional numeric data

作者: Defu Lian , Longbing Cao , Huan Liu , Ling Chen , Guansong Pang

DOI:

关键词:

摘要:

参考文章(30)
Arthur Zimek, Hans-Peter Kriegel, Erich Schubert, Peer Kröger, Interpreting and Unifying Outlier Scores siam international conference on data mining. pp. 13- 24 ,(2011)
Ming Shao, Yun Fu, Sheng Li, Multi-View Low-Rank Analysis for Outlier Detection. siam international conference on data mining. pp. 748- 756 ,(2015)
Heiko Paulheim, Robert Meusel, A decomposition of the outlier detection problem into a set of supervised learning problems Machine Learning. ,vol. 100, pp. 509- 531 ,(2015) , 10.1007/S10994-015-5507-Y
Robert Tibshirani, Martin Wainwright, Trevor Hastie, Statistical Learning with Sparsity: The Lasso and Generalizations ,(2015)
Hoang Vu Nguyen, Hock Hee Ang, Vivekanand Gopalkrishnan, Mining outliers with ensemble of heterogeneous detectors on random subspaces database systems for advanced applications. pp. 368- 383 ,(2010) , 10.1007/978-3-642-12026-8_29
David J. Hand, Robert J. Till, A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems Machine Learning. ,vol. 45, pp. 171- 186 ,(2001) , 10.1023/A:1010920819831
Hans-Peter Kriegel, Matthias S hubert, Arthur Zimek, Angle-based outlier detection in high-dimensional data Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD 08. pp. 444- 452 ,(2008) , 10.1145/1401890.1401946
Yoav Freund, Robert E Schapire, A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting conference on learning theory. ,vol. 55, pp. 119- 139 ,(1997) , 10.1006/JCSS.1997.1504
Devdatt P. Dubhashi, Alessandro Panconesi, Concentration of Measure for the Analysis of Randomized Algorithms ,(2012)
Arthur Zimek, Matthew Gaudet, Ricardo J.G.B. Campello, Jörg Sander, Subsampling for efficient and effective unsupervised outlier detection ensembles knowledge discovery and data mining. pp. 428- 436 ,(2013) , 10.1145/2487575.2487676