Detecting minors in matroids through triangles

作者: Boris Albar , Daniel Gonçalves , Jorge L. Ramírez Alfonsín

DOI: 10.1016/J.EJC.2015.10.010

关键词:

摘要: Abstract In this note we investigate some matroid minor structure results. particular, present sufficient conditions, in terms of triangles, for a to have either U 2 , 4 or F 7 M ( K 5 ) as minor.

参考文章(8)
G. A. Dirac, A Property of 4-Chromatic Graphs and some Remarks on Critical Graphs Journal of the London Mathematical Society. ,vol. s1-27, pp. 85- 92 ,(1952) , 10.1112/JLMS/S1-27.1.85
P.D. Seymour, Matroids and Multicommodity Flows European Journal of Combinatorics. ,vol. 2, pp. 257- 290 ,(1981) , 10.1016/S0195-6698(81)80033-9
W. Mader, Homomorphiesätze für Graphen Mathematische Annalen. ,vol. 178, pp. 154- 168 ,(1968) , 10.1007/BF01350657
James G Oxley, A characterization of the ternary matroids with no M(K 4 )-minor Journal of Combinatorial Theory, Series B. ,vol. 42, pp. 212- 249 ,(1987) , 10.1016/0095-8956(87)90041-4
Eran Nevo, On embeddability and stresses of graphs Combinatorica. ,vol. 27, pp. 465- 472 ,(2007) , 10.1007/S00493-007-2168-X
P.D Seymour, Decomposition of regular matroids Journal of Combinatorial Theory, Series B. ,vol. 28, pp. 305- 359 ,(1980) , 10.1016/0095-8956(80)90075-1
Thomas H. Brylawski, A combinatorial model for series-parallel networks Transactions of the American Mathematical Society. ,vol. 154, pp. 1- 22 ,(1971) , 10.1090/S0002-9947-1971-0288039-7
J.-C. Fournier, A characterization of binary geometries by a double elimination axiom Journal of Combinatorial Theory, Series B. ,vol. 31, pp. 249- 250 ,(1981) , 10.1016/S0095-8956(81)80029-9