Annealed Important Sampling for Models with Latent Variables

作者: R. Kohn , M. N. Tran , M. K. Pitt , C. Strickland

DOI:

关键词:

摘要: This paper is concerned with Bayesian inference when the likelihood analytically intractable but can be unbiasedly estimated. We propose an annealed importance sampling procedure for estimating expectations respect to posterior. The proposed algorithm useful in cases where finding a good proposal density challenging, and estimates of marginal are required. effect estimation investigated, results provide guidelines on how set up precision order optimally implement procedure. methodological empirically demonstrated several simulated real data examples.

参考文章(14)
Nan M. Laird, James H. Ware, Garrett M. Fitzmaurice, Applied Longitudinal Analysis ,(2004)
Christophe Andrieu, Arnaud Doucet, Roman Holenstein, Particle Markov chain Monte Carlo methods Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 72, pp. 269- 342 ,(2010) , 10.1111/J.1467-9868.2009.00736.X
Radford M. Neal, Annealed importance sampling Statistics and Computing. ,vol. 11, pp. 125- 139 ,(2001) , 10.1023/A:1008923215028
George Casella, Christian P. Robert, Monte Carlo Statistical Methods ,(1999)
Sangjoon Kim, Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models Review of Economic Studies. ,vol. 65, pp. 361- 393 ,(1998) , 10.1111/1467-937X.00050
Siem Jan Koopman, James Durbin, Time Series Analysis by State Space Methods Research Papers in Economics. ,(2001)
Pierre Del Moral, Arnaud Doucet, Ajay Jasra, Sequential Monte Carlo samplers Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 68, pp. 411- 436 ,(2006) , 10.1111/J.1467-9868.2006.00553.X
N. Friel, A. N. Pettitt, Marginal likelihood estimation via power posteriors Journal of the Royal Statistical Society: Series B (Statistical Methodology). ,vol. 70, pp. 589- 607 ,(2008) , 10.1111/J.1467-9868.2007.00650.X