摘要: The first four authors have received funding from the European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska- Curie grant agreement No 777778. David Pardo, Elisabete Alberdi Judit Munoz-Matute were partially funded by Basque Government Consolidated Research Group Grant IT649-13 on “Mathematical Modeling, Simulation, Industrial Appli- cations (M2SI)” Projects of Spanish Ministry Economy and Competitiveness with reference MTM2016-76329-R (AEI/FEDER, EU), and MTM2016-81697-ERC/AEI. David Pardo has also BCAM “Severo Ochoa” accreditation excellence SEV-2013-0323 through the BERC 2014-2017 program. Victor M. Calo was partially funded CSIRO Professorial Chair in Computational Geoscience at Curtin University, Mega-grant the Russian Federation (N 14.Y26.31.0013) Deep Earth Imaging Enterprise Future Science Platforms Commonwealth Sci- entific Organisation, CSIRO, Australia. Additional support provided University Institute for Geoscience Research (TIGeR) Computation. Kristoffer G. van der Zee School Math- ematical Sciences Nottingham. Judit the Basque Country (UPV/EHU) No. PIF15/346.

参考文章(47)
Michael Besier, Rolf Rannacher, Goal‐oriented space–time adaptivity in the finite element Galerkin method for the computation of nonstationary incompressible flow International Journal for Numerical Methods in Fluids. ,vol. 70, pp. 1139- 1166 ,(2012) , 10.1002/FLD.2735
Jay Gopalakrishnan, Peter Monk, Paulina Sepúlveda, A tent pitching scheme motivated by Friedrichs theory Computers & Mathematics With Applications. ,vol. 70, pp. 1114- 1135 ,(2015) , 10.1016/J.CAMWA.2015.07.001
Lionel Mathelin, Olivier Le Maître, None, Dual-based {\itshape a posteriori} error estimate for stochastic finite element methods Communications in Applied Mathematics and Computational Science. ,vol. 2, pp. 83- 115 ,(2007) , 10.2140/CAMCOS.2007.2.83
D. Pardo, L. Demkowicz, C. Torres-Verdín, M. Paszynski, Two-dimensional high-accuracy simulation of resistivity logging-while-drilling (LWD) measurements using a self-adaptive goal-oriented hp finite element method Siam Journal on Applied Mathematics. ,vol. 66, pp. 2085- 2106 ,(2006) , 10.1137/050631732
T. Werder, K. Gerdes, D. Schötzau, C. Schwab, hp-discontinuous Galerkin time stepping for parabolic problems Computer Methods in Applied Mechanics and Engineering. ,vol. 190, pp. 6685- 6708 ,(2001) , 10.1016/S0045-7825(01)00258-4
Núria Parés, Pedro Díez, Antonio Huerta, Bounds of functional outputs for parabolic problems. Part I: Exact bounds of the discontinuous Galerkin time discretization Computer Methods in Applied Mechanics and Engineering. ,vol. 197, pp. 1641- 1660 ,(2008) , 10.1016/J.CMA.2007.08.025
J.T. Oden, S. Prudhomme, Goal-oriented error estimation and adaptivity for the finite element method Computers & Mathematics With Applications. ,vol. 41, pp. 735- 756 ,(2001) , 10.1016/S0898-1221(00)00317-5
Shafqat Hussain, Friedhelm Schieweck, Stefan Turek, None, Higher order Galerkin time discretizations and fast multigrid solvers for the heat equation Journal of Numerical Mathematics. ,vol. 19, pp. 41- 61 ,(2011) , 10.1515/JNUM.2011.003