Semi-analytical solution for heat transfer from a buried pipe with convection on the exposed surface

作者: Mo Chung , Pyung-Suk Jung , Roger H Rangel

DOI: 10.1016/S0017-9310(99)00046-0

关键词:

摘要: Abstract The problem of heat transfer from a constant-wall-temperature pipe buried in semi-infinite solid medium with plane surface exposed to fluid flow is solved semi-analytically. Using conformal mapping, the original physical domain transformed into finite rectangular domain. A singular Fredholm integral equation second kind derived and numerically find temperature distribution for solid. total flux Q expressed by modifying conventional expression Q=kSΔT Q=ηkSΔT, where S conduction shape factor, k thermal conductivity solid, ΔT represents difference between wall surrounding fluid. panel efficiency η maximum are presented terms Biot number geometric parameter, L/D.

参考文章(11)
Konrad Knopp, Infinite sequences and series ,(1956)
Victor Adamchk, Emily Martin, Mathematica 3.0 standard add-on packages Wolfram Media , Cambridge University Press. ,(1996)
Francis Begnaud Hildebrand, Advanced Calculus for Applications ,(1962)
Frank P. Incropera, David P. DeWitt, Introduction to Heat Transfer ,(1985)
E. Hahne, U. Grigull, Formfaktor und formwiderstand der stationären mehrdimensionalen wärmeleitung International Journal of Heat and Mass Transfer. ,vol. 18, pp. 751- 767 ,(1975) , 10.1016/0017-9310(75)90205-7
William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling, Harvey Gould, Numerical Recipes, The Art of Scientific Computing American Journal of Physics. ,vol. 55, pp. 90- 91 ,(1987) , 10.1119/1.14981
Stephen Wolfram, The Mathematica book mabo. ,(1996)
I. M. Ryzhik, I. S. Gradshteyn, Table of integrals, series and products New York: Academic Press. ,(1980)
Adrian Bejan, Heat transfer ,(1960)