On the numerical integration of ordinary differential equations by symmetric composition methods

作者: Robert I. McLachlan

DOI: 10.1137/0916010

关键词:

摘要: … , enabling numerical integration of X bycomposition of the flows of A and B. Various … of leapfrog is its (time) symmetry; we say a map S depending on a time step is symmetric if …

参考文章(22)
M. Lothaire, Combinatorics on Words ,(1984)
Nicolas Bourbaki, Lie groups and Lie algebras ,(1998)
Steve Benzel, Zhong Ge, Clint Scovel, Elementary construction of higher order Lie-Poisson integrators Physics Letters A. ,vol. 174, pp. 229- 232 ,(1993) , 10.1016/0375-9601(93)90763-P
Jack Wisdom, Matthew Holman, Symplectic maps for the N-body problem. The Astronomical Journal. ,vol. 102, pp. 1528- 1538 ,(1991) , 10.1086/115978
H. F. Trotter, On the product of semi-groups of operators Proceedings of the American Mathematical Society. ,vol. 10, pp. 545- 551 ,(1959) , 10.1090/S0002-9939-1959-0108732-6
Arieh Iserles, Composite Methods for Numerical Solution of Stiff Systems of ODE's SIAM Journal on Numerical Analysis. ,vol. 21, pp. 340- 351 ,(1984) , 10.1137/0721025
Robert I. McLachlan, Explicit Lie-Poisson integration and the Euler equations Physical Review Letters. ,vol. 71, pp. 3043- 3046 ,(1993) , 10.1103/PHYSREVLETT.71.3043
Etienne Forest, Ronald D. Ruth, Fourth-order symplectic integration Physica D: Nonlinear Phenomena. ,vol. 43, pp. 105- 117 ,(1990) , 10.1016/0167-2789(90)90019-L