Partition Function of a Quadratic Functional and Semiclassical Approximation for Witten's 3-Manifold Invariant

作者: Siddhartha Sen , David H. Adams

DOI:

关键词:

摘要: An extension of the method and results A. Schwarz for evaluating partition function a quadratic functional is presented. This enables functions to be evaluated wide class functionals interest in topological quantum field theory, which no other has previously been available. In particular it appearing semiclassical approximation Witten-invariant most general case. The resulting k-dependence precisely that conjectured by D. Freed R. Gompf.

参考文章(19)
Scott Axelrod, I. M. Singer, Chern-Simons perturbation theory. II Journal of Differential Geometry. ,vol. 39, pp. 173- 213 ,(1994) , 10.4310/JDG/1214454681
Izrailʹ Moiseevich Gelʹfand, Andrey V. Zelevinsky, M. M. Kapranov, Discriminants, Resultants, and Multidimensional Determinants ,(2008)
L. Rozansky, A large $k$ asymptotics of Witten's invariant of Seifert manifolds Communications in Mathematical Physics. ,vol. 171, pp. 279- 322 ,(1995) , 10.1007/BF02099272
Edward Witten, Quantum field theory and the Jones polynomial Communications in Mathematical Physics. ,vol. 121, pp. 351- 399 ,(1989) , 10.1007/BF01217730
A. S. Schwarz, The partition function of a degenerate functional Communications in Mathematical Physics. ,vol. 67, pp. 1- 16 ,(1979) , 10.1007/BF01223197
Daniel S. Freed, Robert E. Gompf, Computer calculation of Witten's 3-manifold invariant Communications in Mathematical Physics. ,vol. 141, pp. 79- 117 ,(1991) , 10.1007/BF02100006
D.B Ray, Reidemeister torsion and the laplacian on lens spaces Advances in Mathematics. ,vol. 4, pp. 109- 126 ,(1970) , 10.1016/0001-8708(70)90018-6
A. S. Schwarz, The Partition Function of Degenerate Quadratic Functional and Ray-Singer Invariants Letters in Mathematical Physics. ,vol. 2, pp. 247- 252 ,(1978) , 10.1007/BF00406412
Daniel S. Freed, Robert E. Gompf, Computer tests of Witten's Chern-Simons theory against the theory of three-manifolds. Physical Review Letters. ,vol. 66, pp. 1255- 1258 ,(1991) , 10.1103/PHYSREVLETT.66.1255