Deep multi-scale video prediction beyond mean square error

作者: Camille Couprie , Yann LeCun , Yann LeCun , Michael Mathieu , Michael Mathieu

DOI:

关键词:

摘要: … 2.1 MULTI-SCALE NETWORK We tackle Problem 1 by making the model multi-scale. A multi-scale version of the model is defined as follows: Let s1,...,sNscales be the sizes of the …

参考文章(23)
Amir Roshan Zamir, Khurram Soomro, Mubarak Shah, UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild arXiv: Computer Vision and Pattern Recognition. ,(2012)
Arthur Szlam, Emily Denton, Rob Fergus, Soumith Chintala, Deep generative image models using a Laplacian pyramid of adversarial networks neural information processing systems. ,vol. 28, pp. 1486- 1494 ,(2015)
Hamed Pirsiavash, Carl Vondrick, Antonio Torralba, Anticipating the future by watching unlabeled video. arXiv: Computer Vision and Pattern Recognition. ,(2015)
John Flynn, Ivan Neulander, James Philbin, Noah Snavely, Deep Stereo: Learning to Predict New Views from the World's Imagery computer vision and pattern recognition. pp. 5515- 5524 ,(2016) , 10.1109/CVPR.2016.595
Alexey Dosovitskiy, Jost Tobias Springenberg, Thomas Brox, None, Learning to generate chairs with convolutional neural networks computer vision and pattern recognition. pp. 1538- 1546 ,(2015) , 10.1109/CVPR.2015.7298761
Philipp Fischer, Thomas Brox, None, U-Net: Convolutional Networks for Biomedical Image Segmentation medical image computing and computer assisted intervention. pp. 234- 241 ,(2015) , 10.1007/978-3-319-24574-4_28
Jonathan Long, Evan Shelhamer, Trevor Darrell, Fully convolutional networks for semantic segmentation computer vision and pattern recognition. pp. 3431- 3440 ,(2015) , 10.1109/CVPR.2015.7298965
Aravindh Mahendran, Andrea Vedaldi, Understanding deep image representations by inverting them computer vision and pattern recognition. pp. 5188- 5196 ,(2015) , 10.1109/CVPR.2015.7299155
Jerome Revaud, Philippe Weinzaepfel, Zaid Harchaoui, Cordelia Schmid, EpicFlow: Edge-preserving interpolation of correspondences for optical flow computer vision and pattern recognition. pp. 1164- 1172 ,(2015) , 10.1109/CVPR.2015.7298720