Phase Uniqueness for the Mallows Measure on Permutations

作者: Meg Walters , Shannon Starr

DOI:

关键词:

摘要: For a positive number $q$ the Mallows measure on symmetric group is probability $S_n$ such that $P_{n,q}(\pi)$ proportional to $q$-to-the-power-$\mathrm{inv}(\pi)$ where $\mathrm{inv}(\pi)$ equals of inversions: pairs $i \pi_j$. One may consider this as mean-field model from statistical mechanics. The weak large deviation principle replace Gibbs variational for characterizing equilibrium measures. In sense, we prove absence phase transition, i.e., uniqueness.

参考文章(27)
Sumit Mukherjee, Estimation of parameters in non uniform models on permutations arXiv: Probability. ,(2013)
Daniel Ueltschi, Christina Goldschmidt, Peter Windridge, Quantum Heisenberg models and their probabilistic representations arXiv: Mathematical Physics. ,(2011)
Bruno Nachtergaele, Robert Sims, Much Ado About Something: Why Lieb-Robinson bounds are useful arXiv: Mathematical Physics. ,(2011)
Tohru Koma, Bruno Nachtergaele, The complete set of ground states of the ferromagnetic XXZ chains Advances in Theoretical and Mathematical Physics. ,vol. 2, pp. 533- 558 ,(1998) , 10.4310/ATMP.1998.V2.N3.A4
Stefan Adams, Jean-Bernard Bru, Wolfgang König, LARGE DEVIATIONS FOR TRAPPED INTERACTING BROWNIAN PARTICLES AND PATHS Annals of Probability. ,vol. 34, pp. 1370- 1422 ,(2006) , 10.1214/009117906000000214
Daniel S. Moak, The Q-analogue of Stirling's formula Rocky Mountain Journal of Mathematics. ,vol. 14, pp. 403- 414 ,(1984) , 10.1216/RMJ-1984-14-2-403
M. Mezard, G. Parisi, M. A. Virasoro, David J. Thouless, Spin Glass Theory and Beyond ,(1986)
Nayantara Bhatnagar, Ron Peled, None, Lengths of monotone subsequences in a Mallows permutation Probability Theory and Related Fields. ,vol. 161, pp. 719- 780 ,(2015) , 10.1007/S00440-014-0559-7