Nice Labeling Problem for Event Structures: A Counterexample

作者: Victor Chepoi

DOI: 10.1137/110837760

关键词:

摘要: In this paper, we present a counterexample to conjecture of Rozoy and Thiagarajan from 1991 (also called the nice labeling problem) asserting that any (coherent) event structure with finite degree admits number labels or, equivalently, there exists function $f:\mathbb{N}\mapsto\mathbb{N}$ such an $\leq n$ at most $f(n)$ labels. Our is based on Burling's construction 1965 3-dimensional box hypergraphs clique 2 arbitrarily large chromatic numbers bijection between domains structures median graphs established by Barthelemy Constantin in 1993.

参考文章(18)
Vel, Van de, M. L. J.,, Theory of convex structures ,(1993)
Glynn Winskel, Events in computation The University of Edinburgh. ,(1980)
Federico Ardila, Megan Owen, Seth Sullivant, Geodesics in CAT(0) cubical complexes Advances in Applied Mathematics. ,vol. 48, pp. 142- 163 ,(2012) , 10.1016/J.AAM.2011.06.004
Mark F. Hagen, WEAK HYPERBOLICITY OF CUBE COMPLEXES AND QUASI-ARBOREAL GROUPS Journal of Topology. ,vol. 7, pp. 385- 418 ,(2014) , 10.1112/JTOPOL/JTT027
Marc Roland Assous, Vincent Bouchitté, Christine Charretton, Brigitte Rozoy, Finite labelling problem in event structures Theoretical Computer Science. ,vol. 123, pp. 9- 19 ,(1994) , 10.1016/0304-3975(94)90065-5
Michah Sageev, Ends of Group Pairs and Non-Positively Curved Cube Complexes Proceedings of the London Mathematical Society. ,vol. s3-71, pp. 585- 617 ,(1995) , 10.1112/PLMS/S3-71.3.585
A. Abrams, R. Ghrist, State Complexes for Metamorphic Robots The International Journal of Robotics Research. ,vol. 23, pp. 811- 826 ,(2004) , 10.1177/0278364904045468
Brigitte Rozoy, P.S. Thiagarajan, Event structures and trace monoids Theoretical Computer Science. ,vol. 91, pp. 285- 313 ,(1991) , 10.1016/0304-3975(91)90087-I
Jean-Pierre Barthélemy, Julien Constantin, Median graphs, parallelism and posets Discrete Mathematics. ,vol. 111, pp. 49- 63 ,(1993) , 10.1016/0012-365X(93)90140-O
R. Ghrist, V. Peterson, The geometry and topology of reconfiguration Advances in Applied Mathematics. ,vol. 38, pp. 302- 323 ,(2007) , 10.1016/J.AAM.2005.08.009