Enhancing Prediction Performance of Landslide Susceptibility Model Using Hybrid Machine Learning Approach of Bagging Ensemble and Logistic Model Tree

作者: Xuan Truong , Muneki Mitamura , Yasuyuki Kono , Venkatesh Raghavan , Go Yonezawa

DOI: 10.3390/APP8071046

关键词:

摘要:

参考文章(80)
Pece V. Gorsevski, M. Kenneth Brown, Kurt Panter, Charles M. Onasch, Anita Simic, Jeffrey Snyder, Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: a case study in the Cuyahoga Valley National Park, Ohio Landslides. ,vol. 13, pp. 467- 484 ,(2016) , 10.1007/S10346-015-0587-0
Lu XiXi Lu XiXi, C Oeurng, Thi Phuong Quynh Le Thi Phuong Quynh Le, Duong Thi Thuy Duong Thi Thuy, Sediment budget as affected by construction of a sequence of dams in the lower Red River, Viet Nam Geomorphology. ,vol. 248, pp. 125- 133 ,(2015) , 10.1016/J.GEOMORPH.2015.06.044
Qingkai Meng, Fang Miao, Jing Zhen, Xinyuan Wang, An Wang, Ying Peng, Qiang Fan, GIS-based landslide susceptibility mapping with logistic regression, analytical hierarchy process, and combined fuzzy and support vector machine methods: a case study from Wolong Giant Panda Natural Reserve, China Bulletin of Engineering Geology and the Environment. ,vol. 75, pp. 923- 944 ,(2016) , 10.1007/S10064-015-0786-X
Christian Huggel, John J. Clague, Oliver Korup, Is climate change responsible for changing landslide activity in high mountains Earth Surface Processes and Landforms. ,vol. 37, pp. 77- 91 ,(2012) , 10.1002/ESP.2223
Niels Landwehr, Mark Hall, Eibe Frank, Logistic Model Trees Machine Learning. ,vol. 59, pp. 161- 205 ,(2005) , 10.1007/S10994-005-0466-3
A. Akgun, E.A. Sezer, H.A. Nefeslioglu, C. Gokceoglu, B. Pradhan, An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm Computers & Geosciences. ,vol. 38, pp. 23- 34 ,(2012) , 10.1016/J.CAGEO.2011.04.012