An exceptional max-stable process fully parameterized by its extremal coefficients

作者: Kirstin Strokorb , Martin Schlather

DOI: 10.3150/13-BEJ567

关键词:

摘要: The extremal coefficient function (ECF) of a max-stable process $X$ on some index set $T$ assigns to each finite subset $A\subset T$ the effective number independent random variables among collection $\{X_t\}_{t\in A}$. We introduce class Tawn-Molchanov processes that is in 1:1 correspondence with ECFs, thus also proving complete characterization ECF terms negative definiteness. corresponding turns out be exceptional all sharing same its dependency maximal w.r.t. inclusion. This entails sharp lower bounds for dimensional distributions arbitrary ECF. A spectral representation and stochastic continuity are discussed. show how build new valid ECFs from given by means Bernstein functions.

参考文章(24)
Stuart G. Coles, Jonathan A. Tawn, Modelling Extremes of the Areal Rainfall Process Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 58, pp. 329- 347 ,(1996) , 10.1111/J.2517-6161.1996.TB02085.X
Stuart Coles, Janet Heffernan, Jonathan Tawn, Dependence Measures for Extreme Value Analyses Extremes. ,vol. 2, pp. 339- 365 ,(1999) , 10.1023/A:1009963131610
Zoran Vondracek, René L. Schilling, Renming Song, Bernstein Functions: Theory and Applications ,(2010)
Ilya S. Molchanov, Theory of Random Sets ,(2012)
Johan Segers, Jan Beirlant, Yuri Goegebeur, JozefL Teugels, Statistics of Extremes: Theory and Applications ,(2004)
M. G. Genton, Y. Ma, H. Sang, On the likelihood function of Gaussian max-stable processes Biometrika. ,vol. 98, pp. 481- 488 ,(2011) , 10.1093/BIOMET/ASR020
Laurens Haan, Sidney I. Resnick, Limit theory for multivariate sample extremes Probability Theory and Related Fields. ,vol. 40, pp. 317- 337 ,(1977) , 10.1007/BF00533086