Panel data dynamics and measurement errors: GMM bias, IV validity and model fit - a Monte Carlo study

作者: Erik Biørn , Xuehui Han

DOI:

关键词:

摘要: An autoregressive fixed effects panel data equation in error-ridden endogenous and exogenous variables, with finite memory of disturbances, latent regressors measurement errors is considered. Finite sample properties GMM estimators are explored by Monte Carlo (MC) simulations. Two kinds compared respect to bias, instrument (IV) validity model fit: differences/IVs levels, levels/IVs differences. We discuss the impact on estimators’ bias other their distributions changes signal-noise variance ratio, length signal noise memory, strength autocorrelation, size IV set, length. Finally, some practical guidelines provided.

参考文章(27)
Dennis J. Aigner, A. Maravall, Identification of the Dynamic Shock-Error Model: The Case of Dynamic Regression. RAND Corporation. ,(1976)
Erik Biørn, Jayalakshmi Krishnakumar, Measurement Errors and Simultaneity Springer Berlin Heidelberg. pp. 323- 367 ,(2008) , 10.1007/978-3-540-75892-1_10
James G. MacKinnon, Russell Davidson, Econometric Theory and Methods ,(2003)
Marcello Pagano, Estimation of Models of Autoregressive Signal Plus White Noise Annals of Statistics. ,vol. 2, pp. 99- 108 ,(1974) , 10.1214/AOS/1176342616
Zvi Griliches, Jerry A. Hausman, Errors in variables in panel data Journal of Econometrics. ,vol. 31, pp. 93- 118 ,(1986) , 10.1016/0304-4076(86)90058-8