One-Dimensional Geometric Random Graphs With Nonvanishing Densities—Part I: A Strong Zero-One Law for Connectivity

作者: Guang Han , Armand M. Makowski

DOI: 10.1109/TIT.2009.2032799

关键词:

摘要: We consider a collection of n independent points which are distributed on the unit interval [0,1] according to some probability distribution function F. Two nodes said be adjacent if their distance is less than given threshold value. When F admits nonvanishing density f , we show under weak continuity assumption that property graph connectivity for induced geometric random exhibits strong zero-one law, and identify corresponding critical scaling. This achieved by generalizing nonuniform distributions limit result obtained Levy maximal spacings uniform distribution.

参考文章(32)
Mathew Penrose, Random Geometric Graphs ,(2003)
S. J. Taylor, Introduction to measure and integration Cambridge University Press. ,(1973) , 10.1017/CBO9780511662478
Bhaskar Krishnamachari, Stephen B. Wicker, Rámon Béjar, Marc Pearlman, Critical Density Thresholds in Distributed Wireless Networks Springer, Boston, MA. pp. 279- 296 ,(2003) , 10.1007/978-1-4757-3789-9_14
Piyush Gupta, P. R. Kumar, Critical Power for Asymptotic Connectivity in Wireless Networks Birkhäuser, Boston, MA. pp. 547- 566 ,(1999) , 10.1007/978-1-4612-1784-8_33
Paul Deheuvels, Strong Limit Theorems for Maximal Spacings from a General Univariate Distribution Annals of Probability. ,vol. 12, pp. 1181- 1193 ,(1984) , 10.1214/AOP/1176993147
Guang Han, Armand M. Makowski, On the critical communication range under node placement with vanishing densities international symposium on information theory. pp. 831- 835 ,(2007) , 10.1109/ISIT.2007.4557327
Martin J.B. Appel, Ralph P. Russo, The connectivity of a graph on uniform points on [0,1]d Statistics & Probability Letters. ,vol. 60, pp. 351- 357 ,(2002) , 10.1016/S0167-7152(02)00233-X
Eric Slud, Entropy and maximal spacings for random partitions Probability Theory and Related Fields. ,vol. 41, pp. 341- 352 ,(1978) , 10.1007/BF00533604