Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations

作者: Christopher A. Kennedy , Mark H. Carpenter

DOI: 10.1016/S0168-9274(02)00138-1

关键词:

摘要: Additive Runge–Kutta (ARK) methods are investigated for application to the spatially discretized one-dimensional convection–diffusion–reaction (CDR) equations. Accuracy, stability, …

参考文章(66)
S. P. Nørsett, G. Wanner, E. Hairer, Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems Springer-Verlag New York, Inc.. ,(1993)
S. González-Pinto, J. I. Montijano, S. Pérez-Rodríguez, On the Starting Algorithms for Fully Implicit Runge-Kutta Methods Bit Numerical Mathematics. ,vol. 40, pp. 685- 714 ,(2000) , 10.1023/A:1022340401909
Lorenzo Pareschi, Giovanni Russo, Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations Recent trends in numerical analysis. pp. 269- 288 ,(2000)
Zdzisław Jackiewicz, Rossana Vermiglio, Order conditions for partitioned Runge-Kutta methods Applications of Mathematics. ,vol. 45, pp. 301- 316 ,(2000) , 10.1023/A:1022323529349
Stephen Wolfram, The Mathematica book (4th edition) The Mathematica book (4th edition). pp. 1470- 1470 ,(1999)
G. Söderlind, The automatic control of numerical integration CWI quarterly. ,vol. 11, pp. 55- 74 ,(1998)
Inmaculada Higueras, Teo Roldán, Starting algorithms for some DIRK methods Numerical Algorithms. ,vol. 23, pp. 357- 369 ,(2000) , 10.1023/A:1019112419829
Alfredo Bellen, Marino Zennaro, Stability properties of interpolants for Runge-Kutta methods SIAM Journal on Numerical Analysis. ,vol. 25, pp. 411- 432 ,(1988) , 10.1137/0725028