Computing bounds for the probability of the union of events by different methods

作者: József Bukszár , Gergely Mádi-Nagy , Tamás Szántai

DOI: 10.1007/S10479-012-1231-1

关键词:

摘要: Let A1,…,An be arbitrary events. The underlying problem is to give lower and upper bounds on the probability P(A1∪⋯∪An) based \(P(A_{i_{1}}\cap\cdots\cap A_{i_{k}})\), 1≤i1<⋯

参考文章(42)
András Prékopa, Boole-Bonferroni inequalities and linear programming Operations Research. ,vol. 36, pp. 145- 162 ,(1988) , 10.1287/OPRE.36.1.145
J. Galambos, E. Xekelaki, G. Simonelli, Bonferroni-type inequalities with applications ,(1996)
Gergely Mádi-Nagy, András Prékopa, On Multivariate Discrete Moment Problems and Their Applications to Bounding Expectations and Probabilities Mathematics of Operations Research. ,vol. 29, pp. 229- 258 ,(2004) , 10.1287/MOOR.1030.0064
Theodore Hailperin, Best Possible Inequalities for the Probability of a Logical Function of Events American Mathematical Monthly. ,vol. 72, pp. 343- 359 ,(1965) , 10.1080/00029890.1965.11970533
Tamás F. Móri, Gábor J. Székely, A note on the background of several Bonferroni−Galambos-type inequalities Journal of Applied Probability. ,vol. 22, pp. 836- 843 ,(1985) , 10.1017/S0021900200108071
Seymour M. Kwerel, BOUNDS ON THE PROBABILITY OF THE UNION AND INTERSECTION OF m EVENTS Advances in Applied Probability. ,vol. 7, pp. 431- 448 ,(1975) , 10.2307/1426084
József Bukszár, Hypermultitrees and sharp Bonferroni inequalities Mathematical Inequalities & Applications. pp. 727- 743 ,(2003) , 10.7153/MIA-06-66
Fred M. Hoppe, Eugene Seneta, Bonferroni-type inequalities and the methods of indicators and polynomials Advances in Applied Probability. ,vol. 22, pp. 241- 246 ,(1990) , 10.1017/S0001867800019431
Elaine Recsei, E. Seneta, BONFERRONI-TYPE INEQUALITIES Advances in Applied Probability. ,vol. 19, pp. 508- 511 ,(1987) , 10.2307/1427431