Predictive performance of “highly complex” artificial neural networks

作者: András Tompos , József L. Margitfalvi , Ernő Tfirst , Károly Héberger

DOI: 10.1016/J.APCATA.2007.02.052

关键词:

摘要: Abstract The effectiveness and the “indeterminacy” of artificial neural networks (ANNs) are discussed. In way determination parameters different models a clear distinction should be made between two approaches: (i) parameter estimation (classical approach) (ii) ANN approach with aim prediction (mainly interpolation). classical regression procedures used, while in latter one so-called “training” using back propagation algorithm is applied. widely employed combinatorial materials science for “information mining” purposes. Parameters obtained have definite physical meaning. It also means that absence presumed hypothetical model cannot advantage usage ANNs it does not require casual system investigated. However, by no Generally, number to determined significantly higher than data training set. has emphasized good predictive ability superior importance meaning parameters.

参考文章(11)
András Tompos, József L. Margitfalvi, Ernő Tfirst, Lajos Végvári, Mohyeddin A. Jaloull, Hamza A. Khalfalla, Mohammed M. Elgarni, Development of catalyst libraries for total oxidation of methane: A case study for combined application of “holographic research strategy and artificial neural networks” in catalyst library design Applied Catalysis A-general. ,vol. 285, pp. 65- 78 ,(2005) , 10.1016/J.APCATA.2005.02.019
Nicholas Gerard Byrne, David Geraint Owen, High throughput screen ,(1999)
András Tompos, József L. Margitfalvi, Ernő Tfirst, Lajos Végvári, Evaluation of catalyst library optimization algorithms: Comparison of the Holographic Research Strategy and the Genetic Algorithm in virtual catalytic experiments Applied Catalysis A-general. ,vol. 303, pp. 72- 80 ,(2006) , 10.1016/J.APCATA.2006.01.028
Ida G. Sprinkhuizen-Kuyper, Egbert J.W. Boers, The error surface of the 2-2-1 XOR network: the finite stationary points Neural Networks. ,vol. 11, pp. 683- 690 ,(1998) , 10.1016/S0893-6080(98)00014-8
Thomas R. Cundari, Jun Deng, Yong Zhao, Design of a Propane Ammoxidation Catalyst Using Artificial Neural Networks and Genetic Algorithms Industrial & Engineering Chemistry Research. ,vol. 40, pp. 5475- 5480 ,(2001) , 10.1021/IE010316V
Alexander Tropsha, Paola Gramatica, Vijay?K. Gombar, The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models Qsar & Combinatorial Science. ,vol. 22, pp. 69- 77 ,(2003) , 10.1002/QSAR.200390007
I.G. Sprinkhuizen-Kuyper, E.J.W. Boers, A local minimum for the 2-3-1 XOR network IEEE Transactions on Neural Networks. ,vol. 10, pp. 968- 971 ,(1999) , 10.1109/72.774274
L. Baumes, D. Farrusseng, M. Lengliz, C. Mirodatos, Using Artificial Neural Networks to Boost High‐throughput Discovery in Heterogeneous Catalysis Qsar & Combinatorial Science. ,vol. 23, pp. 767- 778 ,(2004) , 10.1002/QSAR.200430900
Andras Tompos, Lajos Vegvari, Erno Tfirst, Jozsef Margitfalvi, Assessment of Predictive Ability of Artificial Neural Networks Using Holographic Mapping Combinatorial Chemistry & High Throughput Screening. ,vol. 10, pp. 121- 134 ,(2007) , 10.2174/138620707779940929