The prognostic role of end-of-treatment FDG-PET/CT in diffuse large B cell lymphoma: a pilot study application of neural networks to predict time-to-event.

作者: Salvatore Annunziata , Armando Pelliccioni , Stefan Hohaus , Elena Maiolo , Annarosa Cuccaro

DOI: 10.1007/S12149-020-01542-Y

关键词:

摘要: To evaluate the prognostic role of end-of-treatment (EoT) FDG-PET/CT parameters in diffuse large B cell lymphoma (DLBCL), and then to explore a pilot application Neural Networks (NN) predicting time-to-relapse. For conventional survival analysis, as Deauville score (DS) quantitative extension DS (qPET) were correlated adverse events relapse or progression follow-up. build NN multi-regression models (MM) for time-to-event prediction, patients with residual FDG uptake (DS ≥ 2) an event divided into training test group. Models developed on group evaluated Pearson correlation coefficient (R) mean relative error between observed forecasted calculated. data 308 DLBCL analyzed. qPET factors univariate analysis. Positive negative predictive values, respectively, 55% 83% 4–5, 89% 82% positive qPET. Focusing 37 relapsed uptake, R was 0.63 model 0.49 MM. Mean 58% 67% EoT visual is strong outcome predictor monocentric cohort. The semi-quantitative parameter may increase this performance. A applied seems predict

参考文章(27)
Grace Vincent, Séverine Lamon, Nicholas Gant, Peter J. Vincent, Julia R. MacDonald, James F. Markworth, Johann A. Edge, Anthony J. R. Hickey, Changes in mitochondrial function and mitochondria associated protein expression in response to 2-weeks of high intensity interval training Frontiers in Physiology. ,vol. 6, pp. 51- 51 ,(2015) , 10.3389/FPHYS.2015.00051
Ruth M. Ripley, Adrian L. Harris, Lionel Tarassenko, Non-linear survival analysis using neural networks Statistics in Medicine. ,vol. 23, pp. 825- 842 ,(2004) , 10.1002/SIM.1655
Akbar Biglarian, Enayatollah Bakhshi, Ahmad Reza Baghestani, Mahmood Reza Gohari, Mehdi Rahgozar, Masoud Karimloo, Nonlinear Survival Regression Using Artificial Neural Network Journal of Probability and Statistics. ,vol. 2013, pp. 1- 7 ,(2013) , 10.1155/2013/753930
Dirk Hasenclever, Lars Kurch, Christine Mauz-Körholz, Andreas Elsner, Thomas Georgi, Hamish Wallace, Judith Landman-Parker, Angelina Moryl-Bujakowska, Michaela Cepelová, Jonas Karlén, Ana Álvarez Fernández-Teijeiro, Andishe Attarbaschi, Alexander Fosså, Jane Pears, Andrea Hraskova, Eva Bergsträsser, Auke Beishuizen, Anne Uyttebroeck, Eckhard Schomerus, Osama Sabri, Dieter Körholz, Regine Kluge, None, qPET - a quantitative extension of the Deauville scale to assess response in interim FDG-PET scans in lymphoma. European Journal of Nuclear Medicine and Molecular Imaging. ,vol. 41, pp. 1301- 1308 ,(2014) , 10.1007/S00259-014-2715-9
Mhd Saeed Sharif, Maysam Abbod, Abbes Amira, Habib Zaidi, Artificial neural network-based system for PET volume segmentation International Journal of Biomedical Imaging. ,vol. 2010, pp. 4- ,(2010) , 10.1155/2010/105610
Konstantina Kourou, Themis P. Exarchos, Konstantinos P. Exarchos, Michalis V. Karamouzis, Dimitrios I. Fotiadis, Machine learning applications in cancer prognosis and prediction. Computational and structural biotechnology journal. ,vol. 13, pp. 8- 17 ,(2015) , 10.1016/J.CSBJ.2014.11.005
Petros-Pavlos Ypsilantis, Musib Siddique, Hyon-Mok Sohn, Andrew Davies, Gary Cook, Vicky Goh, Giovanni Montana, Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks PLOS ONE. ,vol. 10, pp. e0137036- ,(2015) , 10.1371/JOURNAL.PONE.0137036
Salvatore Annunziata, Annarosa Cuccaro, Maria Lucia Calcagni, Stefan Hohaus, Alessandro Giordano, Vittoria Rufini, Interim FDG-PET/CT in Hodgkin lymphoma: the prognostic role of the ratio between target lesion and liver SUVmax (rPET) Annals of Nuclear Medicine. ,vol. 30, pp. 588- 592 ,(2016) , 10.1007/S12149-016-1092-9
H Zhang, J Molitoris, S Tan, I Giacomelli, D Scartoni, C Gzell, N Bhooshan, W Choi, W Lu, M Mehta, W D'Souza, SU-F-R-04: Radiomics for Survival Prediction in Glioblastoma (GBM) Medical Physics. ,vol. 43, pp. 3373- 3373 ,(2016) , 10.1118/1.4955776
Lidia Strigari, Andrea Attili, Andrea Duggento, Agostino Chiaravalloti, Orazio Schillaci, Maria Giovanna Guerrisi, Quantitative analysis of basal and interim PET/CT images for predicting tumor recurrence in patients with Hodgkin's lymphoma. Nuclear Medicine Communications. ,vol. 37, pp. 16- 22 ,(2015) , 10.1097/MNM.0000000000000399