Implementation of group-covariant positive operator valued measures by orthogonal measurements

作者: Dominik Janzing , Martin Rötteler , Thomas Decker

DOI: 10.1063/1.1827924

关键词:

摘要: We consider group-covariant positive operator valued measures (POVMs) on a finite dimensional quantum system. Following Neumark’s theorem POVM can be implemented by an orthogonal measurement larger Accordingly, our goal is to find circuit implementation of given which uses the symmetry POVM. Based representation theory group we develop general approach for POVMs consist rank-one operators. The construction relies method decompose matrices that intertwine two representations group. give several examples resulting circuits are efficient. In particular, obtain efficient class generated Weyl–Heisenberg groups. These allow implement approximative simultaneous position and crystal momentum particle moving cyclic chain.

参考文章(32)
P. K. Aravind, Generalized Kochen-Specker theorem Physical Review A. ,vol. 68, pp. 052104- ,(2003) , 10.1103/PHYSREVA.68.052104
I. Martin Isaacs, Character theory of finite groups ,(1976)
Markus Püschel, Martin Rötteler, Thomas Beth, Fast Quantum Fourier Transforms for a Class of Non-Abelian Groups Applicable Algebra in Engineering, Communication and Computing. ,vol. 1719, pp. 148- 159 ,(1999) , 10.1007/3-540-46796-3_15
Ulrich Baum, Michael Clausen, Fast Fourier transforms ,(1993)
D. Giulini, H. D. Zeh, Erich Joos, Claus Kiefer, I.-O. Stamatescu, Joachim Kupsch, Decoherence and the Appearance of a Classical World in Quantum Theory ,(1996)
Isaac L. Chuang, Michael A. Nielsen, Quantum Computation and Quantum Information ,(2000)
Thomas Beth, On the computational complexity of the general discrete fourier transform Theoretical Computer Science. ,vol. 51, pp. 331- 339 ,(1987) , 10.1016/0304-3975(87)90041-7
Juha J. Vartiainen, Mikko Möttönen, Martti M. Salomaa, Efficient Decomposition of Quantum Gates Physical Review Letters. ,vol. 92, pp. 177902- ,(2004) , 10.1103/PHYSREVLETT.92.177902
Asher Peres, Neumark's theorem and quantum inseparability Foundations of Physics. ,vol. 20, pp. 1441- 1453 ,(1990) , 10.1007/BF01883517