Analysis of computational techniques for diabetes diagnosis using the combination of iris-based features and physiological parameters

作者: Piyush Samant , Ravinder Agarwal

DOI: 10.1007/S00521-019-04551-9

关键词:

摘要: Digital image processing and advanced machine vision techniques are popular for the diagnosis of disease(s) in biomedical science. This paper presents a detailed comparative analysis learning-based classification to diagnose type 2 diabetes using combination iris-based features physiological parameters. A set 334 subjects investigated which divided into diabetic non-diabetic groups. Moreover, group is classified three different subgroups according duration state. Statistical features, gray-level co-occurrence matrix, run length matrix-based extracted from specific areas iris. Nine classifiers application selected, subsequently, six parameters (accuracy, precision, sensitivity, specificity, F-score, area under curve) each classifier analyzed. The provided promising results with more than 95% accuracy. proposed technique can be used as noninvasive non-contact tool help find out patients prevalence diabetes.

参考文章(41)
Albert Alm, Siv F. E Nilsson, Leonard A Levin, Paul L Kaufman, James Ver Hoeve, Samuel M Wu, Adler's physiology of the eye Published in <b>2011</b> in Edinburgh by Saunders Elsevier. ,(2011)
Ridza Azri, Khairul Azha, Ranjit Singh Sarban Singh, Detecting Cholesterol Presence with Iris Recognition Algorithm InTech. ,(2011) , 10.5772/24202
Léia Fortes Salles, Maria Júlia Paes da Silva, Eutália Aparecida Cândido de Araújo, The prevalence of iridologic signs in individuals with Diabetes Mellitus Acta Paulista De Enfermagem. ,vol. 21, pp. 474- 480 ,(2008) , 10.1590/S0103-21002008000300015
RA Ramlee, KA Aziz, S Ranjit, Mazran Esro, None, Automated Detecting Arcus Senilis, Symptom for Cholesterol Presence Using Iris Recognition Algorithm Journal of Telecommunication, Electronic and Computer Engineering. ,vol. 3, pp. 29- 39 ,(2011)
Léia Fortes Salles, Maria Júlia Paes da Silva, [The sign of the Cross of Andreas in the iris and Diabetes Mellitus: a longitudinal study]. Revista Da Escola De Enfermagem Da Usp. ,vol. 49, pp. 626- 631 ,(2015) , 10.1590/S0080-623420150000400013
Navjot Kaur, Mamta Juneja, A review on Iris Recognition international conference on recent advances in engineering computational sciences. pp. 1- 5 ,(2014) , 10.1109/RAECS.2014.6799603
J. Daugman, How iris recognition works IEEE Transactions on Circuits and Systems for Video Technology. ,vol. 14, pp. 21- 30 ,(2004) , 10.1109/TCSVT.2003.818350
Sherif E Hussein, Osama A Hassan, Malcolm H Granat, None, Assessment of the potential iridology for diagnosing kidney disease using wavelet analysis and neural networks Biomedical Signal Processing and Control. ,vol. 8, pp. 534- 541 ,(2013) , 10.1016/J.BSPC.2013.04.006
Francisco P.M. Oliveira, João Manuel R.S. Tavares, Medical image registration: a review. Computer Methods in Biomechanics and Biomedical Engineering. ,vol. 17, pp. 73- 93 ,(2014) , 10.1080/10255842.2012.670855
Léia Fortes Salles, Eutália Aparecida Cândido de Araújo, Maria Júlia Paes da Silva, A prevalência de sinais iridológicos em indivíduos com Diabetes Mellitus Acta Paulista De Enfermagem. ,vol. 21, pp. 474- 480 ,(2008) , 10.1590/S0103-21002008000300015