One-stage exponential integrators for nonlinear Schrödinger equations over long times

作者: David Cohen , Ludwig Gauckler

DOI: 10.1007/S10543-012-0385-1

关键词:

摘要: Near-conservation over long times of the actions, energy, mass and momentum along numerical solution cubic Schrodinger equation with small initial data is shown. Spectral discretization in space one-stage exponential integrators time are used. The proofs use modulated Fourier expansions.

参考文章(25)
Thierry Cazenave, Semilinear Schrodinger Equations ,(2003)
L. Hakan Eliasson, Sergei Kuksin, KAM for the nonlinear Schrödinger equation Annals of Mathematics. ,vol. 172, pp. 371- 435 ,(2010) , 10.4007/ANNALS.2010.172.371
B. Cano, A. González-Pachón, Theodore E. Simos, George Psihoyios, Ch. Tsitouras, Exponential Methods for the Time Integration of Schrödinger Equation Icnaam 2010: International Conference of Numerical Analysis and Applied Mathematics 2010. ,vol. 1281, pp. 1821- 1823 ,(2010) , 10.1063/1.3498247
J. Bourgain, QUASI-PERIODIC SOLUTIONS OF HAMILTONIAN PERTURBATIONS OF 2D LINEAR SCHRODINGER EQUATIONS Annals of Mathematics. ,vol. 148, pp. 363- 439 ,(1998) , 10.2307/121001
David Cohen, Ernst Hairer, Christian Lubich, Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations Numerische Mathematik. ,vol. 110, pp. 113- 143 ,(2008) , 10.1007/S00211-008-0163-9
Ludwig Gauckler, Christian Lubich, Splitting Integrators for Nonlinear Schrödinger Equations Over Long Times Foundations of Computational Mathematics. ,vol. 10, pp. 275- 302 ,(2010) , 10.1007/S10208-010-9063-3
Arnaud Debussche, Erwan Faou, Modified Energy for Split-Step Methods Applied to the Linear Schrödinger Equation SIAM Journal on Numerical Analysis. ,vol. 47, pp. 3705- 3719 ,(2009) , 10.1137/080744578