Multipole Moments. II. Curved Space

作者: Robert Geroch

DOI: 10.1063/1.1665427

关键词:

摘要: Multipole moments are defined for static, asymptotically flat, source‐free solutions of Einstein's equations. The definition is completely coordinate independent. We take one the 3‐surfaces V, orthogonal to timelike Killing vector, and add it a single point Λ at infinity. resulting space inherits conformal structure from V. multipole solution emerge as collection totally symmetric, trace‐free tensors P, Pa, Pab, ⋯ Λ. These obtained certain combinations derivatives norm vector. (For static space‐times, this plays role ``Newtonian gravitational potential.'') formalism shown yield usual Laplace's equation in flat space, dependence these on choice origin being reflected behavior P's. As an example, Weyl discussed.

参考文章(7)
W. G. Dixon, A covariant multipole formalism for extended test bodies in general relativity Il Nuovo Cimento. ,vol. 34, pp. 317- 339 ,(1964) , 10.1007/BF02734579
Robert Geroch, Local Characterization of Singularities in General Relativity Journal of Mathematical Physics. ,vol. 9, pp. 450- 465 ,(1968) , 10.1063/1.1664599
ZERO REST-MASS FIELDS INCLUDING GRAVITATION: ASYMPTOTIC BEHAVIOUR Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 284, pp. 159- 203 ,(1965) , 10.1098/RSPA.1965.0058
Robert Geroch, Multipole Moments. I. Flat Space Journal of Mathematical Physics. ,vol. 11, pp. 1955- 1961 ,(1970) , 10.1063/1.1665348
J. L. Synge, Relativity: The General Theory ,(1960)
Hermann Weyl, Zur Gravitationstheorie Annalen der Physik. ,vol. 359, pp. 117- 145 ,(1917) , 10.1002/ANDP.19173591804