Neutrosophic cubic (α, β)-ideals in semigroups with application

作者: Majid Khan , Muhammad Gulistan , Naveed Yaqoob , Muhammad Shabir

DOI: 10.3233/JIFS-18112

关键词:

摘要: … cubic sets in various decision making problems. If we consider the fuzzy set part in a cubic set … function then it is a classical example of a cube like tunnel where a lot of light energy can …

参考文章(26)
Pu Pao-Ming, Liu Ying-Ming, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence Journal of Mathematical Analysis and Applications. ,vol. 76, pp. 571- 599 ,(1980) , 10.1016/0022-247X(80)90048-7
S.K. Bhakat, P. DaS, ∈,∈∨q -fuzzy subgroup Fuzzy Sets and Systems. ,vol. 80, pp. 359- 368 ,(1996) , 10.1016/0165-0114(95)00157-3
Muhammad Shabir, Young Bae Jun, Yasir Nawaz, Semigroups characterized by (C,C,νqk)-fuzzy ideals Computers & Mathematics With Applications. ,vol. 60, pp. 1473- 1493 ,(2010) , 10.1016/J.CAMWA.2010.06.030
Madad Khan, Young Bae Jun, Muhammad Gulistan, Naveed Yaqoob, The generalized version of Jun's cubic sets in semigroups Journal of Intelligent and Fuzzy Systems. ,vol. 28, pp. 947- 960 ,(2015) , 10.3233/IFS-141377
B. Davvaz, (ε, ε ν q)-fuzzy subnear-rings and ideals soft computing. ,vol. 10, pp. 206- 211 ,(2006) , 10.1007/S00500-005-0472-1
Krassimir T. Atanassov, Intuitionistic fuzzy sets Fuzzy Sets and Systems. ,vol. 20, pp. 87- 96 ,(1986) , 10.1016/S0165-0114(86)80034-3
S.K Bhakat, P Das, Fuzzy subrings and ideals redefined Fuzzy Sets and Systems. ,vol. 81, pp. 383- 393 ,(1996) , 10.1016/0165-0114(95)00202-2
Y JUN, S SONG, Generalized fuzzy interior ideals in semigroups Information Sciences. ,vol. 176, pp. 3079- 3093 ,(2006) , 10.1016/J.INS.2005.09.002
Sandeep Kumar Bhakat, (e, e V q )-fuzzy normal, quasinormal and maximal subgroups Fuzzy Sets and Systems. ,vol. 112, pp. 299- 312 ,(2000) , 10.1016/S0165-0114(98)00029-3