Dynamic Salp swarm algorithm for feature selection

作者: Mohammad Tubishat , Salinah Ja'afar , Mohammed Alswaitti , Seyedali Mirjalili , Norisma Idris

DOI: 10.1016/J.ESWA.2020.113873

关键词:

摘要: Recently, many optimization algorithms have been applied for Feature selection (FS) problems and show a clear outperformance in comparison with traditional FS methods …

参考文章(82)
Messaouda Nekkaa, Dalila Boughaci, Hybrid Harmony Search Combined with Stochastic Local Search for Feature Selection Neural Processing Letters. ,vol. 44, pp. 199- 220 ,(2016) , 10.1007/S11063-015-9450-5
Clint McCrory, Twist in the tale Nature. ,vol. 330, pp. 293- 293 ,(1987) , 10.1038/330293A0
Leila Asadzadeh, A local search genetic algorithm for the job shop scheduling problem with intelligent agents Computers & Industrial Engineering. ,vol. 85, pp. 376- 383 ,(2015) , 10.1016/J.CIE.2015.04.006
Leandro dos Santos Coelho, Viviana Cocco Mariani, Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization Expert Systems With Applications. ,vol. 34, pp. 1905- 1913 ,(2008) , 10.1016/J.ESWA.2007.02.002
Il-Seok Oh, Jin-Seon Lee, Byung-Ro Moon, Hybrid genetic algorithms for feature selection IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 26, pp. 1424- 1437 ,(2004) , 10.1109/TPAMI.2004.105
James Gleick, Chaos: Making a New Science ,(1987)
D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization IEEE Transactions on Evolutionary Computation. ,vol. 1, pp. 67- 82 ,(1997) , 10.1109/4235.585893
Emina Aličković, Abdulhamit Subasi, Breast cancer diagnosis using GA feature selection and Rotation Forest Neural Computing and Applications. ,vol. 28, pp. 753- 763 ,(2017) , 10.1007/S00521-015-2103-9