A finite element approach to modelling fractal ultrasonic transducers

作者: E. A. Algehyne , A. J. Mulholland

DOI: 10.1093/IMAMAT/HXV012

关键词:

摘要: Piezoelectric ultrasonic transducers usually employ composite structures to improve their transmission and reception sensitivities. The geometry of the is regular with one dominant length scale and, since these are resonant devices, this dictates central operating frequency device. In order construct a wide bandwith device it would seem natural therefore utilize resonators that span range scales. article we derive mathematical model predict dynamics fractal ultrasound transducer; in case being Sierpinski gasket. Expressions for electrical mechanical fields contained within structure expressed terms finite element basis. propagation an wave transducer then analyzed used expressions non-dimensionalised impedance sensitivities as function driving frequency. Comparing key performance measures equivalent standard (Euclidean) design shows some benefits designs.

参考文章(28)
Jiashi Yang, The mechanics of piezoelectric structures World Scientific. ,(2006) , 10.1142/6057
Janan Abdulbake, Anthony J. Mulholland, Jagannathan Gomatam, Existence and stability of reaction-diffusion waves on a fractal lattice Chaos Solitons & Fractals. ,vol. 20, pp. 799- 814 ,(2004) , 10.1016/J.CHAOS.2003.09.003
Björn Nadrowski, Jörg T. Albert, Martin C. Göpfert, Transducer-Based Force Generation Explains Active Process in Drosophila Hearing Current Biology. ,vol. 18, pp. 1365- 1372 ,(2008) , 10.1016/J.CUB.2008.07.095
A. J. MULHOLLAND, A. J. WALKER, PIEZOELECTRIC ULTRASONIC TRANSDUCERS WITH FRACTAL GEOMETRY Fractals. ,vol. 19, pp. 469- 479 ,(2011) , 10.1142/S0218348X11005555
Kenneth J. Falconer, Jiaxin Hu, Nonlinear Diffusion Equations on Unbounded Fractal Domains Journal of Mathematical Analysis and Applications. ,vol. 256, pp. 606- 624 ,(2001) , 10.1006/JMAA.2000.7331
Anthony J. Mulholland, Richard L. O’Leary, Nishal Ramadas, Agnes Parr, Alexandre Troge, Richard A. Pethrick, Gordon Hayward, A theoretical analysis of a piezoelectric ultrasound device with an active matching layer Ultrasonics. ,vol. 47, pp. 102- 110 ,(2007) , 10.1016/J.ULTRAS.2007.08.002
William A. Schwalm, Mizuho K. Schwalm, Extension theory for lattice Green functions. Physical Review B. ,vol. 37, pp. 9524- 9542 ,(1988) , 10.1103/PHYSREVB.37.9524