Well-Posedness and Optimal Time-Decay for Compressible MHD System in Besov Space

作者: Junxiong Jia , Jigen Peng , Kexue Li

DOI:

关键词:

摘要: In this paper, firstly, we prove the global well-posedness of three dimensional compressible magnetohydrodynamics equations for some classes large initial data, which may have oscillation density and energy velocity magnetic field. Secondly, optimal time decay with low regularity assumptions about data. Especially, can obtain $L^{2}$ rate when data small in critical Besov space (no condition $H^{N/2+1}$). When calculate rate, use differential type estimates homogeneous space, evolution negative results proved first part.

参考文章(27)
Raphaël Danchin, A Lagrangian approach for the compressible Navier-Stokes equations arXiv: Analysis of PDEs. ,(2012)
Li Xu, Ping Zhang, Global small solutions to three-dimensional incompressible MHD system arXiv: Analysis of PDEs. ,(2013)
Junxiong Jia, Jigen Peng, Optimal Time Decay of Navier-Stokes Equations With Low Regularity Initial Data arXiv: Analysis of PDEs. ,(2015)
Ping Zhang, Fanghua Lin, Li Xu, Global small solutions to 2-D incompressible MHD system arXiv: Analysis of PDEs. ,(2013)
Qionglei Chen, Changxing Miao, Zhifei Zhang, Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities Revista Matematica Iberoamericana. ,vol. 26, pp. 915- 946 ,(2010) , 10.4171/RMI/621
Dongfen BIAN, Boling GUO, WELL-POSEDNESS IN CRITICAL SPACES FOR THE FULL COMPRESSIBLE MHD EQUATIONS Acta Mathematica Scientia. ,vol. 33, pp. 1153- 1176 ,(2013) , 10.1016/S0252-9602(13)60071-5
R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations Inventiones Mathematicae. ,vol. 141, pp. 579- 614 ,(2000) , 10.1007/S002220000078
Fucai Li, Hongjun Yu, Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 141, pp. 109- 126 ,(2011) , 10.1017/S0308210509001632
J.Y. Chemin, N. Lerner, Flow of Non-Lipschitz Vector-Fields and Navier-Stokes Equations Journal of Differential Equations. ,vol. 121, pp. 314- 328 ,(1995) , 10.1006/JDEQ.1995.1131