Efficient Method for the Concentration Determination of Fmoc Groups Incorporated in the Core-Shell Materials by Fmoc-Glycine.

作者: Elżbieta Szczepańska , Beata Grobelna , Jacek Ryl , Amanda Kulpa , Tadeusz Ossowski

DOI: 10.3390/MOLECULES25173983

关键词:

摘要: In this paper, we described the synthesis procedure of TiO2@SiO2 core-shell modified with 3-(aminopropyl)trimethoxysilane (APTMS). The chemical attachment Fmoc–glycine (Fmoc–Gly–OH) at surface structure was performed to determine amount active amino groups on basis Fmoc group calculation. We characterized nanostructures using various methods: transmission electron microscope (TEM), scanning microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray photoelectron (XPS) confirm modification effectiveness. ultraviolet-visible (UV-vis) measurement adopted for quantitative determination present by substitution. nanomaterials were functionalized Fmoc–Gly–OH then fluorenylmethyloxycarbonyl (Fmoc) cleaved 20% (v/v) solution piperidine in DMF. This reaction led formation a dibenzofulvene–piperidine adduct enabling estimation free maximum absorption 289 301 nm UV-vis spectroscopy. calculations loading materials different molar coefficient: 5800 6089 dm3 × mol−1 cm−1 λ = both 7800 8021 nm. obtained results indicate that TiO2@SiO2–(CH2)3–NH2 calculated 6 9 µmol/g. Furthermore, all measurements compared used as model sample.

参考文章(75)
Jie Kang, Yuan Li, Yingnan Chen, Ailing Wang, Bin Yue, Yanrong Qu, Yongliang Zhao, Haibin Chu, Core–shell Ag@SiO2 nanoparticles of different silica shell thicknesses: Preparation and their effects on photoluminescence of lanthanide complexes Materials Research Bulletin. ,vol. 71, pp. 116- 121 ,(2015) , 10.1016/J.MATERRESBULL.2015.07.017
A. Calborean, F. Martin, D. Marconi, R. Turcu, I.E. Kacso, L. Buimaga-Iarinca, F. Graur, I. Turcu, Adsorption mechanisms of L-Glutathione on Au and controlled nano-patterning through Dip Pen Nanolithography. Materials Science and Engineering: C. ,vol. 57, pp. 171- 180 ,(2015) , 10.1016/J.MSEC.2015.07.042
Javier Eduardo García Castañeda, Cristian Francisco Vergel Galeano, Zuly Jenny Rivera Monroy, Javier Eduardo Rosas Pérez, Efficient Synthesis of Peptides with 4-Methylpiperidine as Fmoc Removal Reagent by Solid Phase Synthesis Revista de la Sociedad Química de Mexico. ,vol. 58, pp. 386- 392 ,(2017) , 10.29356/JMCS.V58I4.47
J. Abad, C. Gonzalez, P. L. de Andres, E. Roman, Characterization of thin silicon overlayers on rutile TiO 2 ( 110 ) − ( 1 × 1 ) Physical Review B. ,vol. 82, pp. 165420- ,(2010) , 10.1103/PHYSREVB.82.165420
Jie Zhao, Maria Milanova, Marijn M.C.G. Warmoeskerken, Victoria Dutschk, Surface modification of TiO2 nanoparticles with silane coupling agents Colloids and Surfaces A: Physicochemical and Engineering Aspects. ,vol. 413, pp. 273- 279 ,(2012) , 10.1016/J.COLSURFA.2011.11.033
Ming Qin, Sen Hou, LiKai Wang, XiZeng Feng, Rui Wang, YanLian Yang, Chen Wang, Lei Yu, Bin Shao, MingQiang Qiao, Two methods for glass surface modification and their application in protein immobilization. Colloids and Surfaces B: Biointerfaces. ,vol. 60, pp. 243- 249 ,(2007) , 10.1016/J.COLSURFB.2007.06.018
K. Nozawa, H. Gailhanou, L. Raison, P. Panizza, H. Ushiki, E. Sellier, J. P. Delville, M. H. Delville, Smart Control of Monodisperse Stöber Silica Particles: Effect of Reactant Addition Rate on Growth Process Langmuir. ,vol. 21, pp. 1516- 1523 ,(2005) , 10.1021/LA048569R
Justyna Czupryniak, Paweł Niedziałkowski, Marcin Karbarz, Tadeusz Ossowski, Zbigniew Stojek, Lysine and arginine oligopeptides tagged with anthraquinone: electrochemical properties. Electroanalysis. ,vol. 24, pp. 975- 982 ,(2012) , 10.1002/ELAN.201100705
John A. Howarter, Jeffrey P. Youngblood, Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir. ,vol. 22, pp. 11142- 11147 ,(2006) , 10.1021/LA061240G