Precise asymptotics for large deviations of integral forms

作者: Xiangfeng Yang

DOI:

关键词:

摘要: For suitable families of locally infinitely divisible Markov processes $\{\xi^{{\epsilon}}_t\}_{0\leq t\leq T}$ with frequent small jumps depending on a parameter $\epsilon>0,$ precise asymptotics for large deviations integral forms $\mathbb{E}^{\epsilon}[\exp\{{\epsilon}^{-1}F(\xi^{\epsilon})\}]$ are proved smooth functionals $F.$ The main ingredient the proof in this paper is recent result regarding asymptotic expansions expectations $\mathbb{E}^{\epsilon}[G(\xi^{\epsilon})\}]$ $G.$ Several connections between these deviation and partial integro-differential equations included as well.

参考文章(23)
M. Schilder, Some asymptotic formulas for Wiener integrals Transactions of the American Mathematical Society. ,vol. 125, pp. 63- 85 ,(1966) , 10.1090/S0002-9947-1966-0201892-6
Bernard Bercu, Laure Coutin, Nicolas Savy, Sharp large deviations for the non-stationary Ornstein-Uhlenbeck process Stochastic Processes and their Applications. ,vol. 122, pp. 3393- 3424 ,(2012) , 10.1016/J.SPA.2012.06.006
T. Mikosch, A.V. Nagaev, Large deviations of heavy-tailed sums with applications in insurance Extremes. ,vol. 1, pp. 81- 110 ,(1998) , 10.1023/A:1009913901219
Thomas G. Kurtz, Stewart N. Ethier, Markov Processes: Characterization and Convergence ,(1986)
B. Bercu, L. Coutin, N. Savy, Sharp Large Deviations for the Fractional Ornstein–Uhlenbeck Process Theory of Probability and Its Applications. ,vol. 55, pp. 575- 610 ,(2011) , 10.1137/S0040585X97985108
M. D. Donsker, S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time—III Communications on Pure and Applied Mathematics. ,vol. 29, pp. 389- 461 ,(1976) , 10.1002/CPA.3160290405
V. R. Fatalov, Laplace-type exact asymptotic formulas for the Bogoliubov Gaussian measure Theoretical and Mathematical Physics. ,vol. 168, pp. 1112- 1149 ,(2011) , 10.1007/S11232-011-0092-0
V I Piterbarg, V R Fatalov, The Laplace method for probability measures in Banach spaces Russian Mathematical Surveys. ,vol. 50, pp. 1151- 1239 ,(1995) , 10.1070/RM1995V050N06ABEH002635
Peter M. Lee, A. D. Wentzell, A Course in the Theory of Stochastic Processes The Mathematical Gazette. ,vol. 67, pp. 70- ,(1983) , 10.2307/3617386
John Haigh, R. N. Battacharya, R. Ranga Rao, Normal Approximations and Asymptotic Expansions Journal of the Royal Statistical Society: Series A (General). ,vol. 140, pp. 236- 236 ,(1977) , 10.2307/2344881