Convergence of Regularization Parameters for Solutions Using the Filtered Truncated Singular Value Decomposition

作者: Anthony W. Helmstetter , Rosemary A. Renaut , Saeed Vatankhah

DOI: 10.1007/S10543-019-00762-7

关键词:

摘要: The truncated singular value decomposition may be used to find the solution of linear discrete ill-posed problems in conjunction with Tikhonov regularization and requires estimation a parameter that balances between sizes fit data function term. unbiased predictive risk estimator is one suggested method for finding when noise measurements normally distributed known variance. In this paper we provide an algorithm using automatically finds both number terms use from decomposition. Underlying new result proves converges For analysis it sufficient assume Picard condition satisfied exact completely contaminates measured coefficients sufficiently large terms, dependent on level degree ill-posedness system. A lower bound provided leading computationally efficient algorithm. Supporting results are compared those obtained generalized cross validation. Simulations two-dimensional examples verify theoretical effectiveness increasing levels, demonstrate relative reconstruction errors less than This pre-print article published BIT Numerical Mathematics. final authenticated version available online at: https URL.

参考文章(35)
Martin Hanke, Per Christian Hansen, Regularization methods for large-scale problems ,(1993)
V.A. Morozov, On the solution of functional equations by the method of regularization Doklady Mathematics. ,vol. 7, pp. 414- 417 ,(1966)
Bernd Hofmann, Regularization for applied inverse and ill-posed problems : a numerical approach B.G. Teubner Verlagsgesellschaft. ,(1986)
Brian Borchers, Richard C. Aster, Clifford H. Thurber, Parameter estimation and inverse problems ,(2005)
Aki Kallonen, Lauri Harhanen, Keijo Hämäläinen, Esa Niemi, Antti Kujanpää, Samuli Siltanen, Tomographic X-ray data of a walnut arXiv: Data Analysis, Statistics and Probability. ,(2015)
Gene H. Golub, Michael Heath, Grace Wahba, Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter Technometrics. ,vol. 21, pp. 215- 223 ,(1979) , 10.1080/00401706.1979.10489751
Petros Drineas, Michael W. Mahoney, S. Muthukrishnan, Tamás Sarlós, Faster least squares approximation Numerische Mathematik. ,vol. 117, pp. 219- 249 ,(2011) , 10.1007/S00211-010-0331-6
Xiangrui Meng, Michael A. Saunders, Michael W. Mahoney, LSRN: A Parallel Iterative Solver for Strongly Over- or Underdetermined Systems SIAM Journal on Scientific Computing. ,vol. 36, pp. C95- C118 ,(2014) , 10.1137/120866580