Thermal decomposition of flame-retarded high-impact polystyrene

作者: E Jakab , Md.A Uddin , T Bhaskar , Y Sakata

DOI: 10.1016/S0165-2370(03)00075-5

关键词:

摘要: The thermal decomposition of four high-impact polystyrene (HIPS) samples containing brominated flame retardants has been studied. Decabromodiphenyl ether (Br10-DPE) and decabromodibenzyl (Br10-DB) were used as two contained antimony trioxide (Sb2O3) synergist besides the additives. HIPS was studied by thermogravimetry/mass spectrometry (TG/MS), pyrolysis-gas chromatography/mass (Py-GC/MS) pyrolysis-mass (Py-MS). It established that additives themselves do not change temperature (PS). However, Sb2O3 reduces stability indicating initiates PS. Water styrene products detected during first stage from Sb2O3. Nevertheless, majority PS decomposes at a higher temperature. decompose different pathways. scission CC bonds, resulting in formation bromotoluenes, is most important reaction Br10-DB In contrast, Br10-DPE an intermolecular ring closure pathway producing dibenzofurans (DBF).

参考文章(21)
Samuel Leo Madorsky, Thermal Degradation of Organic Polymers ,(1964)
J. Simon, T. Kántor, T. Kozma, E. Pungor, Thermal analysis of Sb2O3 /Organohalide-based flame retardants including atomic absorption detection of the evolved species Journal of Thermal Analysis and Calorimetry. ,vol. 25, pp. 57- 77 ,(1982) , 10.1007/BF01913054
W. Schnabel, G.F. Levchik, C.A. Wilkie, D.D. Jiang, S.V. Levchik, Thermal degradation of polystyrene, poly(1,4-butadiene) and copolymers of styrene and 1,4-butadiene irradiated under air or argon with 60Co-γ-rays Polymer Degradation and Stability. ,vol. 63, pp. 365- 375 ,(1999) , 10.1016/S0141-3910(98)00114-1
M. Wolf, M. Riess, D. Heitmann, M. Schreiner, H. Thoma, O. Vierle, R. van Eldik, Application of a purge and trap TDS-GC/MS procedure for the determination of emissions from flame retarded polymers. Chemosphere. ,vol. 41, pp. 693- 699 ,(2000) , 10.1016/S0045-6535(99)00459-2
Ayako Torikai, Takahiro Kobatake, Fumio Okisaki, Hideo Shuyama, Photodegradation of polystyrene containing flame-retardants: wavelength sensitivity and efficiency of degradation Polymer Degradation and Stability. ,vol. 50, pp. 261- 267 ,(1995) , 10.1016/0141-3910(95)00143-3
Md.Azhar Uddin, Thallada Bhaskar, Jun Kaneko, Akinori Muto, Yusaku Sakata, Toshiki Matsui, Dehydrohalogenation during pyrolysis of brominated flame retardant containing high impact polystyrene (HIPS-Br) mixed with polyvinylchloride (PVC) ☆ Fuel. ,vol. 81, pp. 1819- 1825 ,(2002) , 10.1016/S0016-2361(02)00109-6
Hiroaki Sato, Kiyotaka Kondo, Shin Tsuge, Hajime Ohtani, Nobuyuki Sato, Mechanisms of thermal degradation of a polyester flame-retarded with antimony oxide/brominated polycarbonate studied by temperature-programmed analytical pyrolysis Polymer Degradation and Stability. ,vol. 62, pp. 41- 48 ,(1998) , 10.1016/S0141-3910(97)00259-0
D. Price, G.J. Milnes, C. Lukas, A.M. Phillips, Pyrolysis studies of flame retarded plastic systems Journal of Analytical and Applied Pyrolysis. ,vol. 11, pp. 499- 510 ,(1987) , 10.1016/0165-2370(87)85049-0
R. Dumler, D. Lenoir, H. Thoma, O. Hutzinger, Thermal formation of polybrominated dibenzofurans from decabromodiphenyl ether in a polybutylene-terephthalate polymer matrix Journal of Analytical and Applied Pyrolysis. ,vol. 16, pp. 153- 158 ,(1989) , 10.1016/0165-2370(89)85014-4
W. Klusmeier, R. Sonnemann, K.-H. Ohrbach, A. Kettrup, Investigations of the combustion products of flame-protected impact resistant polystyrene Thermochimica Acta. ,vol. 112, pp. 75- 79 ,(1987) , 10.1016/0040-6031(87)88083-8