The Gambier mapping

作者: A. Ramani , B. Grammaticos

DOI: 10.1016/0378-4371(95)00213-8

关键词:

摘要: Abstract We propose a discrete form for an equation due to Gambier and which belongs the class of fifty second order equations that possess Painleve property. In continuous case, solutions is obtained through system Riccati equations. The same holds true in case also. use singularity confinement criterion study integrability this new mapping.

参考文章(8)
B. Grammaticos, A. Ramani, Discrete Painlevé Equations: Derivation and Properties Applications of Analytic and Geometric Methods to Nonlinear Differential Equations. pp. 299- 313 ,(1993) , 10.1007/978-94-011-2082-1_30
M. J. Ablowitz, A. Ramani, H. Segur, Nonlinear evolution equations and ordinary differential equations of painlevè type Lettere Al Nuovo Cimento. ,vol. 23, pp. 333- 338 ,(1978) , 10.1007/BF02824479
A. F. Rañada, A. Ramani, B. Dorizzi, B. Grammaticos, The weak‐Painlevé property as a criterion for the integrability of dynamical systems Journal of Mathematical Physics. ,vol. 26, pp. 708- 710 ,(1985) , 10.1063/1.526611
B. Grammaticos, A. Ramani, V. Papageorgiou, Do integrable mappings have the Painlevé property Physical Review Letters. ,vol. 67, pp. 1825- 1828 ,(1991) , 10.1103/PHYSREVLETT.67.1825
A. Ramani, B. Grammaticos, J. Hietarinta, Discrete versions of the Painlevé equations. Physical Review Letters. ,vol. 67, pp. 1829- 1832 ,(1991) , 10.1103/PHYSREVLETT.67.1829
Edward Lindsay Ince, Ordinary differential equations ,(1927)