Ballistic space-time correlators of the classical toda lattice

作者: Herbert Spohn

DOI: 10.1088/1751-8121/AB91D5

关键词:

摘要: The Toda lattice is an integrable system and its natural space-time stationary states are the generalized Gibbs ensembles (GGE). Of particular physical interest then correlations of conserved fields. To leading order they scale ballistically. We report on exact solution respective hydrodynamic equations linearized around a GGE as background state. Thereby we obtain concise formula for family scaling functions.

参考文章(26)
N. Theodorakopoulos, F. G. Mertens, Dynamics of the Toda lattice: A soliton-phonon phase-shift analysis Physical Review B. ,vol. 28, pp. 3512- 3519 ,(1983) , 10.1103/PHYSREVB.28.3512
A. Cuccoli, M. Spicci, V. Tognetti, R. Vaia, Dynamic correlations of the classical and quantum Toda lattices. Physical Review B. ,vol. 47, pp. 7859- 7868 ,(1993) , 10.1103/PHYSREVB.47.7859
Ioana Dumitriu, Alan Edelman, Matrix models for beta ensembles Journal of Mathematical Physics. ,vol. 43, pp. 5830- 5847 ,(2002) , 10.1063/1.1507823
T. Schneider, E. Stoll, Excitation Spectrum of the Toda Lattice: A Molecular-Dynamics Study Physical Review Letters. ,vol. 45, pp. 997- 1000 ,(1980) , 10.1103/PHYSREVLETT.45.997
C. Boldrighini, Y.M. Suhov, One-Dimensional Hard-Rod Caricature of Hydrodynamics: “Navier–Stokes Correction” for Local Equilibrium Initial States Communications in Mathematical Physics. ,vol. 189, pp. 577- 590 ,(1997) , 10.1007/S002200050218
M. Hénon, Integrals of the Toda lattice Physical Review B. ,vol. 9, pp. 1921- 1923 ,(1974) , 10.1103/PHYSREVB.9.1921
P. Gruner-Bauer, F. G. Mertens, Excitation spectrum of the Toda lattice for finite temperatures European Physical Journal B. ,vol. 70, pp. 435- 447 ,(1988) , 10.1007/BF01312117
M. Jenssen, W. Ebeling, Distribution functions and excitation spectra of Toda systems at intermediate temperatures Physica D: Nonlinear Phenomena. ,vol. 141, pp. 117- 132 ,(2000) , 10.1016/S0167-2789(00)00025-7
Emmanuel Cépa, Dominique Lépingle, Diffusing particles with electrostatic repulsion Probability Theory and Related Fields. ,vol. 107, pp. 429- 449 ,(1997) , 10.1007/S004400050092