Partially-latinized designs

作者: J. A. JOHN , E. R. WILLIAMS

DOI: 10.1023/A:1008969914035

关键词:

摘要: An interchange optimization algorithm to construct partially-latinized designs is described. The objective function a weighted linear combination of up five functions, each which corresponds blocking factor the required design. Nested simulated annealing used address local optima problems. average efficiency factors generated are assessed against theoretical upper bounds.

参考文章(11)
J.A. Eccleston, C.A. McGilchrist, Algebra of a row-column design Journal of Statistical Planning and Inference. ,vol. 12, pp. 305- 310 ,(1985) , 10.1016/0378-3758(85)90079-5
D. Whitaker, A nested simulated annealing algorithm Journal of Statistical Computation and Simulation. ,vol. 53, pp. 233- 241 ,(1995) , 10.1080/00949659508811708
E.R. Williams, J.A. John, UPPER BOUNDS FOR LATINIZED DESIGNS Australian Journal of Statistics. ,vol. 35, pp. 229- 236 ,(1993) , 10.1111/J.1467-842X.1993.TB01329.X
K. R. Shah, Optimality Criteria for Incomplete Block Designs Annals of Mathematical Statistics. ,vol. 31, pp. 791- 794 ,(1960) , 10.1214/AOMS/1177705807
E. R. Williams, J. A. John, Cyclic and Computer Generated Designs ,(1995)
JA John, None, Bounds for the efficiency factor of row-column designs Biometrika. ,vol. 79, pp. 658- 661 ,(1992) , 10.1093/BIOMET/79.3.658
E. R. Williams, ROW AND COLUMAN DESIGNS WITH CONTIGUOUS REPLICATES Australian Journal of Statistics. ,vol. 28, pp. 154- 163 ,(1986) , 10.1111/J.1467-842X.1986.TB00594.X
J. A. Eccleston, A. Hedayat, On the Theory of Connected Designs: Characterization and Optimality Annals of Statistics. ,vol. 2, pp. 1238- 1255 ,(1974) , 10.1214/AOS/1176342876
James Roger, R. W. Payne, Genstat 5 release 3 reference manual Journal of The Royal Statistical Society Series A-statistics in Society. ,vol. 157, pp. 508- ,(1994) , 10.2307/2983543
Boyd Harshbarger, Lyle L. Davis, Latinized Rectangular Lattices Biometrics. ,vol. 8, pp. 73- ,(1952) , 10.2307/3001528